BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-02-2018, 12:51 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla #DNPNMR #ODNP

From The DNP-NMR Blog:

Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla #DNPNMR #ODNP

Schöps, Spindler Philipp, and Prisner Thomas, “Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla.”


https://doi.org/10.1515/zpch-2016-0844


Dynamic nuclear polarization (DNP) is a methodology to increase the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. It relies on the transfer of the electron spin polarization from a radical to coupled nuclear spins, driven by microwave excitation resonant with the electron spin transitions. In this work we explore the potential of pulsed multi-frequency microwave excitation in liquids. Here, the relevant DNP mechanism is the Overhauser effect. The experiments were performed with TEMPOL radicals in aqueous solution at room temperature using a Q-band frequency (1.2 T) electron paramagnetic resonance (EPR) spectrometer combined with a Minispec NMR spectrometer. A fast arbitrary waveform generator (AWG) enabled the generation of multi-frequency pulses used to either sequentially or simultaneously excite all three 14N-hyperfine lines of the nitroxide radical. The multi-frequency excitation resulted in a doubling of the observed DNP enhancements compared to single-frequency microwave excitation. Q-band free induction decay (FID) signals of TEMPOL were measured as a function of the excitation pulse length allowing the efficiency of the electron spin manipulation by the microwave pulses to be extracted. Based on this knowledge we could quantitatively model our pulsed DNP enhancements at 1.2 T by numerical solution of the Bloch equations, including electron spin relaxation and experimental parameters. Our results are in good agreement with theoretical predictions. Whereas for a narrow and homogeneous single EPR line continuous wave excitation leads to more efficient DNP enhancements compared to pulsed excitation for the same amount of averaged microwave power. The situation is different for radicals with several hyperfine lines or in the presence of inhomogeneous line broadening. In such cases pulsed single/multi-frequency excitation can lead to larger DNP enhancements.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla
From The DNP-NMR Blog: Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla Schöps, P., E. Spindler Philipp, and F. Prisner Thomas, Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla, in Z. Phys. Chem. 2017. p. 561. https://www.degruyter.com/view/j/zpch.2017.231.issue-3/zpch-2016-0844/zpch-2016-0844.xml
nmrlearner News from NMR blogs 0 05-26-2018 01:57 AM
Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog: Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization #DNPNMR Scott, F.J., et al., Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. J Magn Reson, 2018. 289: p. 45-54. https://www.ncbi.nlm.nih.gov/pubmed/29471275
nmrlearner News from NMR blogs 0 04-27-2018 10:26 PM
Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance #DNPNMR
From The DNP-NMR Blog: Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Dey, A., A. Banerjee, and N. Chandrakumar, Transferred Overhauser DNP: A Fast, Efficient Approach for Room Temperature 13C ODNP at Moderately Low Fields and Natural Abundance. The Journal of Physical Chemistry B, 2017. 121(29): p. 7156-7162. https://www.ncbi.nlm.nih.gov/pubmed/28658577
nmrlearner News from NMR blogs 0 11-21-2017 03:50 AM
[NMR] PhD/Postdoc positions available on DNP/MAS NMR and multi-frequency EPR in Konstanz, Germany #DNPNMR
From The DNP-NMR Blog: PhD/Postdoc positions available on DNP/MAS NMR and multi-frequency EPR in Konstanz, Germany #DNPNMR
nmrlearner News from NMR blogs 0 10-12-2017 01:25 AM
A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR
From The DNP-NMR Blog: A tailored multi-frequency EPR approach to accurately determine the magnetic resonance parameters of dynamic nuclear polarization agents: application to AMUPol #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} This is a very nice article illustrating the importance of understanding the EPR parameters of a polarizing agent used in DNP-NMR spectroscopy. Here the 9, 95 and 275 GHz EPR spectroscopy is used to characterize AMUPol and predict its performance in high-field DNP.
nmrlearner News from NMR blogs 0 06-05-2017 03:59 PM
Field-frequency locked X-band Overhauser effect spectrometer #DNPNMR
From The DNP-NMR Blog: Field-frequency locked X-band Overhauser effect spectrometer #DNPNMR This article is already a bit older. However, it nicely illustrates that DNP, specifically ODNP has been around for a while already, and gives some interesting specifics on the instrumentation that are still valid today. Chandrakumar, N. and P.T. Narasimhan, Field-frequency locked X-band Overhauser effect spectrometer. Review of Scientific Instruments, 1981. 52(4): p. 533-538.
nmrlearner News from NMR blogs 0 04-11-2017 04:25 AM
Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR
From The DNP-NMR Blog: Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Nasibulov, E.A., et al., Theoretical treatment of pulsed Overhauser dynamic nuclear polarization: Consideration of a general periodic pulse sequence. JETP Letters, 2016. 103(9): p. 582-587. http://dx.doi.org/10.1134/S0021364016090113
nmrlearner News from NMR blogs 0 02-22-2017 06:28 PM
Nonselective excitation of pulsed ELDOR using multi-frequency microwaves
Nonselective excitation of pulsed ELDOR using multi-frequency microwaves Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 17 September 2011</br> Yuki*Asada, Risa*Mutoh, Masahiro*Ishiura, Hiroyuki*Mino</br> The use of a polychromatic microwave pulse to expand the pumping bandwidth in pulsed electron-electron double resonance (PELDOR) was investigated. The pumping pulse was applied in resonance with the broad (~100 mT) electron paramagnetic resonance (EPR) signal of the manganese cluster of photosystem II in the S2state. The observation pulses were in...
nmrlearner Journal club 0 09-23-2011 05:53 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:37 AM.


Map