In the last ten years, Residual Dipolar Couplings (RDC) have come to occupy a very important place in the structure determination of proteins, nucleic acids and carbohydrates in liquid state. Although RDCs were originally discovered and theoretically explained for small molecules in liquid crystal solvents by A. Saupe in 1968 (Angew. Chem. Int. Ed. Engl. 1968, 7, 97) the spectra were too complex for a practical use in structure determination. The discovering of weak orienting media in water led to an explosion in the application of RDCs for biomolecule structure determination. However, those aligning media used for biomolecules were not applicable to most of the small molecules. Fortunately, recent research results considerably extended the applications of RDCs to small molecules as new alignment media for organic solvents, either liquid crystal type as poly-?-benzyl-L-glutamate (PBLG), or mechanically stretched cross-linked polymer gels such as poly(methyl methacrylate) gel (PMMA) or polydimethylsiloxane (PDMS) are available. If you are interested in RDCs you should certainly check the very didactic introduction in the theory by Kramer et al. Applications and practical considerations are nicely reviewed in the recent reviews by Cristina Thiele ( See this and this) and Burkhard Luy ( see this).
The use of RDCs in small molecule structural determination is typically based on the determination of the alignment tensor, a 3x3 matrix, which contains the information about the probability of the molecule pointing in a particular direction of the space. This matrix can be determined by least squares fitting to the experimental RDCs.
However, there exists a further potential problem on the application of RDC to the structure determination of small molecules: the lack of enough independent RDCs, i.e, those coming from non parallel vectors, since in most cases only 1DCH RDCs are available from F1 ( see this) or F2 coupled (see this ) HSQC type experiments, thus making the fitting problem underdetermined. Armando Navarro et al. have recently proposed an elegant approach to get the most out of the experimental data by incorporating into the calculations two of the most common freely rotating groups, namely the methyl and phenyl groups (using 2-fold and 3-fold jump models).
The authors have automated this averaging of RDCs from freely rotating groups in version 1.03 of our program Mspinwhich we hope will facilitate the use of RDC among a broader community of users interested in solving structural questions of small molecules
[Stan NMR blog] Rotating Molecules versus Rotating Spins
Rotating Molecules versus Rotating Spins
Clarification of a confusing aspect of NMR
Source: Stan blog library
nmrlearner
News from NMR blogs
0
01-11-2011 01:14 PM
Rotating Light Provides Indirect Look into the Nucleus
Rotating Light Provides Indirect Look into the Nucleus
Results reported in The Journal of Chemical Physics introduce an alternative path to observe nuclei indirectly via the orbiting electrons by using light.
More...
[NMR analysis blog] Conformational analysis of cyclic compounds using Mspin and RDCs
Conformational analysis of cyclic compounds using Mspin and RDCs
On the occasion of the release of a new version of Mspin (BTW, this is the very first multiplatform version of Mspin: it works now in Windows, Mac OS X and Linux), I would like to bring into your attention one of the many applications where this software plays an instrumental role: The application of Mspin to the study of seven-membered rings compounds by NMR.
The NMR study of seven-membered ring compounds is a classical problem in conformational analysis. They are commonly studied by means of NOE-based experiments...
nmrlearner
News from NMR blogs
0
10-24-2010 08:03 AM
Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
Related Articles Hydration water dynamics in biopolymers from NMR relaxation in the rotating frame.
J Magn Reson. 2010 Sep 24;
Authors: Blicharska B, Peemoeller H, Witek M
Assuming dipole-dipole interaction as the dominant relaxation mechanism of protons of water molecules adsorbed onto macromolecule (biopolymer) surfaces we have been able to model the dependences of relaxation rates on temperature and frequency. For adsorbed water molecules the correlation times are...
nmrlearner
Journal club
0
10-22-2010 04:33 PM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabo
Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
Related Articles Off-resonance rotating frame spin-lattice NMR relaxation studies of phosphorus metabolite rotational diffusion in bovine lens homogenates.
Biochemistry. 1990 Aug 21;29(33):7547-57
Authors: Caines GH, Schleich T, Morgan CF, Farnsworth PN
The rotational diffusion behavior of phosphorus metabolites present in calf lens cortical and nuclear homogenates was investigated by the NMR technique of...