p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kim, J., M. Liu, and C. Hilty, Modeling of Polarization Transfer Kinetics in Protein Hydration Using Hyperpolarized Water. The Journal of Physical Chemistry B, 2017. 121(27): p. 6492-6498.
Water–protein interactions play a central role in protein structure, dynamics, and function. These interactions, traditionally, have been studied using nuclear magnetic resonance (NMR) by measuring chemical exchange and nuclear Overhauser effect (NOE). Polarization transferred from hyperpolarized water can result in substantial transient signal enhancements of protein resonances due to these processes. Here, we use dissolution dynamic nuclear polarization and flow-NMR for measuring the pH dependence of transferred signals to the protein trypsin. A maximum enhancement of 20 is visible in the amide proton region of the spectrum at pH 6.0, and of 47 at pH 7.5. The aliphatic region is enhanced up to 2.3 times at pH 6.0 and up to 2.5 times at pH 7.5. The time dependence of these observed signals can be modeled quantitatively using rate equations incorporating chemical exchange to amide sites and, optionally, intramolecular NOE to aliphatic protons. On the basis of these two- and three-site models, average exchange (kex) and cross-relaxation rates (?) obtained were kex = 12 s–1, ? = -0.33 s–1 for pH 7.5 and kex = 1.8 s–1, ? = -0.72 s–1 for pH 6.0 at a temperature of 304 K. These values were validated using conventional EXSY and NOESY measurements. In general, a rapid measurement of exchange and cross-relaxation rates may be of interest for the study of structural changes of the protein occurring on the same time scale. Besides protein–water interactions, interactions with cosolvent or solutes can further be investigated using the same methods.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase
From The DNP-NMR Blog:
Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Wang, Y., M. Ragavan, and C. Hilty, Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase. J. Biomol. NMR, 2016. 65(1): p. 41-48.
http://dx.doi.org/10.1007/s10858-016-0037-x
nmrlearner
News from NMR blogs
0
05-15-2017 04:34 PM
Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase
Site specific polarization transfer from a hyperpolarized ligand of dihydrofolate reductase
Abstract
Proteinâ??ligand interaction is often characterized using polarization transfer by the intermolecular nuclear Overhauser effect (NOE). For such NOE experiments, hyperpolarization of nuclear spins presents the opportunity to increase the spin magnetization, which is transferred, by several orders of magnitude. Here, folic acid, a ligand of dihydrofolate reductase (DHFR), was hyperpolarized on 1H spins using dissolution dynamic nuclear polarization...
nmrlearner
Journal club
0
05-18-2016 09:53 PM
Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery
From The DNP-NMR Blog:
Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery
Min, H., G. Sekar, and C. Hilty, Polarization Transfer from Ligands Hyperpolarized by Dissolution Dynamic Nuclear Polarization for Screening in Drug Discovery. ChemMedChem, 2015. 10(9): p. 1559-63.
http://www.ncbi.nlm.nih.gov/pubmed/26315550
nmrlearner
News from NMR blogs
0
10-05-2015 07:08 PM
[NMR paper] Probing membrane protein structure using water polarization transfer solid-state NMR.
Probing membrane protein structure using water polarization transfer solid-state NMR.
Related Articles Probing membrane protein structure using water polarization transfer solid-state NMR.
J Magn Reson. 2014 Aug 25;
Authors: Williams JK, Hong M
Abstract
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected (1)H polarization transfer from water to biomolecules is a versatile approach for studying water-protein,...
nmrlearner
Journal club
0
09-18-2014 01:33 PM
[NMR paper] Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR
Probing Membrane Protein Structure Using Water Polarization Transfer Solid-State NMR
Publication date: Available online 25 August 2014
Source:Journal of Magnetic Resonance</br>
Author(s): Jonathan K. Williams , Mei Hong</br>
Water plays an essential role in the structure and function of proteins, lipid membranes and other biological macromolecules. Solid-state NMR heteronuclear-detected 1H polarization transfer from water to biomolecules is a versatile approach for studying water-protein, water-membrane, and water-carbohydrate interactions in biology. We review...
nmrlearner
Journal club
0
08-26-2014 01:14 AM
Water–Polysaccharide Interactions in the Primary Cell Wall of Arabidopsis thaliana from Polarization Transfer Solid-State NMR
Water–Polysaccharide Interactions in the Primary Cell Wall of Arabidopsis thaliana from Polarization Transfer Solid-State NMR
Paul B. White, Tuo Wang, Yong Bum Park, Daniel J. Cosgrove and Mei Hong
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja504108h/aop/images/medium/ja-2014-04108h_0009.gif
Journal of the American Chemical Society
DOI: 10.1021/ja504108h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/7abtnNxi-xg
Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation
From The DNP-NMR Blog:
Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation
This article was already published in 2009 but unfortunately I missed it.
Pavlova, A., et al., Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Phys. Chem. Chem. Phys., 2009. 11(31): p. 6833-6839.