BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-06-2019, 04:47 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,786
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Microscale Hyperpolarization #DNPNMR

From The DNP-NMR Blog:

Microscale Hyperpolarization #DNPNMR

Kiss, Sebastian, Lorenzo Bordonali, Jan G. Korvink, and Neil MacKinnon. “Microscale Hyperpolarization.” In Micro and Nano Scale NMR, by Jens Anders and Jan G. Korvink, 297–351. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018.

https://doi.org/10.1002/9783527697281.ch11.


Magnetic resonance (MR) is a tremendously powerful technique for obtaining both structural and dynamical information noninvasively and with atomic resolution. The primary limitation of MR is sensitivity, with the detected resonant exchange of energy dependent on population differences on the order of tens of parts per million as dictated by Boltzmann statistics. The MR community has implemented various strategies to overcome this inherent limitation, including maximizing the static polarizing magnetic field and cooling the probe electronics. As discussed throughout this book, an alternative strategy is to miniaturize the MR detector in order to maximize resonant energy exchange efficiency between the sample and the instrument electronics. In this chapter, we discuss approaches that aim to overcome Boltzmann population statistics. These hyperpolarization techniques rely on the transfer of a large polarization source to the target nuclear spin system, or the preparation of pure spin states that are transferred into the target spin system. The archetypal example of the former case is dynamic nuclear polarization (DNP), whereas in the latter case para-hydrogen and optically pumped 3He or 129Xe are examples.



Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Maximizing nuclear hyperpolarization in pulse cooling under MAS #DNPNMR
From The DNP-NMR Blog: Maximizing nuclear hyperpolarization in pulse cooling under MAS #DNPNMR Björgvinsdóttir, Snædís, Brennan J. Walder, Nicolas Matthey, and Lyndon Emsley. “Maximizing Nuclear Hyperpolarization in Pulse Cooling under MAS.” Journal of Magnetic Resonance 300 (March 1, 2019): 142–48. https://doi.org/10.1016/j.jmr.2019.01.011.
nmrlearner News from NMR blogs 0 03-24-2019 10:41 PM
Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface #DNPNMR
From The DNP-NMR Blog: Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface #DNPNMR Björgvinsdóttir, Snædís, Brennan J. Walder, Arthur C. Pinon, and Lyndon Emsley. “Bulk Nuclear Hyperpolarization of Inorganic Solids by Relay from the Surface.” Journal of the American Chemical Society 140, no. 25 (June 27, 2018): 7946–51. https://doi.org/10.1021/jacs.8b03883.
nmrlearner News from NMR blogs 0 11-25-2018 06:02 AM
Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate #DNPNMR
From The DNP-NMR Blog: Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate #DNPNMR Cavallari, E., et al., Studies to enhance the hyperpolarization level in PHIP-SAH-produced C13-pyruvate. J Magn Reson, 2018. 289: p. 12-17. https://www.ncbi.nlm.nih.gov/pubmed/29448129
nmrlearner News from NMR blogs 0 04-02-2018 03:36 PM
Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system #DNPNMR
From The DNP-NMR Blog: Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kiswandhi, A., et al., Construction and 13 C hyperpolarization efficiency of a 180 GHz dissolution dynamic nuclear polarization system. Magn Reson Chem, 2017. 55(9): p. 828-836. https://www.ncbi.nlm.nih.gov/pubmed/28407455
nmrlearner News from NMR blogs 0 10-14-2017 02:04 AM
Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K #DNPNMR
From The DNP-NMR Blog: Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K #DNPNMR Vuichoud, B., et al., Hyperpolarization of Frozen Hydrocarbon Gases by Dynamic Nuclear Polarization at 1.2 K. J Phys Chem Lett, 2016. 7(16): p. 3235-9. https://www.ncbi.nlm.nih.gov/pubmed/27483034
nmrlearner News from NMR blogs 0 09-22-2016 10:41 PM
[NMR] Two PhD positions in Solid State NMR in Nijmegen #DNPNMR #HYPERPOLARIZATION
From The DNP-NMR Blog: Two PhD positions in Solid State NMR in Nijmegen #DNPNMR #HYPERPOLARIZATION From the Ampere Magnetic Resonance List
nmrlearner News from NMR blogs 0 06-25-2016 02:57 AM
Nuclear hyperpolarization comes of age #DNPNMR
From The DNP-NMR Blog: Nuclear hyperpolarization comes of age #DNPNMR Jeschke, G. and L. Frydman, Nuclear hyperpolarization comes of age. J Magn Reson, 2016. 264: p. 1-2. http://www.ncbi.nlm.nih.gov/pubmed/26920824
nmrlearner News from NMR blogs 0 05-20-2016 03:04 PM
A microscale protein NMR sample screening pipeline
A microscale protein NMR sample screening pipeline Abstract As part of efforts to develop improved methods for NMR protein sample preparation and structure determination, the Northeast Structural Genomics Consortium (NESG) has implemented an NMR screening pipeline for protein target selection, construct optimization, and buffer optimization, incorporating efficient microscale NMR screening of proteins using a micro-cryoprobe. The process is feasible because the newest generation probe requires only small amounts of protein, typically 30â??200 μg in 8â??35 μl volume. Extensive...
nmrlearner Journal club 0 01-09-2011 12:46 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:15 AM.


Map