Park, J.M., et al., Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging. Neuro-Oncology, 2013. 15(4): p. 433-41.
Background The metabolic phenotype that derives disproportionate energy via glycolysis in solid tumors, including glioma, leads to elevated lactate labeling in metabolic imaging using hyperpolarized [1-13C]pyruvate. Although the pyruvate dehydrogenase (PDH)–mediated flux from pyruvate to acetyl coenzyme A can be indirectly measured through the detection of carbon-13 (13C)-labeled bicarbonate, it has proven difficult to visualize 13C-bicarbonate at high enough levels from injected [1-13C]pyruvate for quantitative analysis in brain. The aim of this study is to improve the detection of 13C-labeled metabolites, in particular bicarbonate, in glioma and normal brain in vivo and to measure the metabolic response to dichloroacetate, which upregulates PDH activity.Methods An optimized protocol for chemical shift imaging and high concentration of hyperpolarized [1-13C]pyruvate were used to improve measurements of lactate and bicarbonate in C6 glioma-transplanted rat brains. Hyperpolarized [1-13C]pyruvate was injected before and 45 min after dichloroacetate infusion. Metabolite ratios of lactate to bicarbonate were calculated to provide improved metrics for characterizing tumor metabolism.Results Glioma and normal brain were well differentiated by lactate-to-bicarbonate ratio (P = .002, n = 5) as well as bicarbonate (P = .0002) and lactate (P = .001), and a stronger response to dichloroacetate was observed in glioma than in normal brain.Conclusion Our results clearly demonstrate for the first time the feasibility of quantitatively detecting 13C-bicarbonate in tumor-bearing rat brain in vivo, permitting the measurement of dichloroacetate-modulated changes in PDH flux. The simultaneous detection of lactate and bicarbonate provides a tool for a more comprehensive analysis of glioma metabolism and the assessment of metabolic agents as anti-brain cancer drugs.
Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging
From the The DNP-NMR Blog:
Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging
Nelson, S.J., et al., Strategies for rapid in vivo 1H and hyperpolarized 13C MR spectroscopic imaging. J. Magn. Reson., 2013. 229(0): p. 187-197.
http://dx.doi.org/10.1016/j.jmr.2013.02.003
nmrlearner
News from NMR blogs
0
04-15-2013 08:52 AM
[NMR paper] Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Design of a novel class of protein-based magnetic resonance imaging contrast agents for the molecular imaging of cancer biomarkers.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013 Jan 17;
Authors: Xue S, Qiao J, Pu F, Cameron M, Yang JJ
Abstract
Magnetic...
nmrlearner
Journal club
0
02-03-2013 10:19 AM
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
December 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 225</br>
</br>
Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner
Journal club
0
12-15-2012 09:51 AM
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
Magnetic resonance diffusion and relaxation characterization of water in the unfrozen vein network in polycrystalline ice and its response to microbial metabolic products
December 2012
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 225</br>
</br>
Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In this work, Nuclear Magnetic Resonance measurements of relaxation rates and...
nmrlearner
Journal club
0
12-01-2012 06:10 PM
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products
Magnetic Resonance Diffusion and Relaxation Characterization of Water in the Unfrozen Vein Network in Polycrystalline Ice and its Response to Microbial Metabolic Products
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Jennifer R. Brown, Timothy I. Brox, Sarah J. Vogt, Joseph D. Seymour, Mark Skidmore, Sarah L. Codd</br>
Polycrystalline ice, as found in glaciers and the ice sheets of Antarctica, is a low porosity porous media consisting of a complicated and dynamic pore structure of liquid-filled intercrystalline veins within a solid ice matrix. In...
nmrlearner
Journal club
0
10-05-2012 09:10 AM
NMR metabolic and physiological markers of therapeutic response.
NMR metabolic and physiological markers of therapeutic response.
NMR metabolic and physiological markers of therapeutic response.
Adv Exp Med Biol. 2011;701:129-35
Authors: Lee SC, Poptani H, Delikatny EJ, Pickup S, Nelson DS, Schuster SJ, Nasta SD, Svoboda J, Goldstein SC, Wallace SG, Loevner LA, Mellon EA, Reddy R, Glickson JD
Identification of reliable metabolic and physiological NMR detectable markers for prediction and early detection of therapeutic response is essential to enabling NMR guided individualized therapy for cancer. Because...