Solid-state DNP experiments are often performed at cryogenic temperatures and this article is an excellent review about the current technologies to spin samples at (very) low temperatures.
ConcistrČ, M., et al., Magic-Angle Spinning NMR of Cold Samples. Acc. Chem. Res., 2013.
Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to perform site-resolved studies of low-temperature physical phenomena such as quantum rotations, quantum tunneling, ortho-para conversion between spin isomers, and superconductivity. In examining biological molecules, the improved sensitivity provided by cryogenic NMR facilitates the study of protein assembly or membrane proteins. The combination of low-temperatures with dynamic nuclear polarization has the potential to boost sensitivity even further. Many research groups, including ours, have addressed the technical challenges and developed hardware for magic-angle-spinning of samples cooled down to a few tens of degrees Kelvin. In this Account, we briefly describe these hardware developments and review several recent activities of our group which involve low-temperature magic-angle-spinning NMR. Low-temperature operation allows us to trap intermediates that cannot be studied under ambient conditions by NMR because of their short lifetime. We have used low-temperature NMR to study the electronic structure of bathorhodopsin, the primary photoproduct of the light-sensitive membrane protein, rhodopsin. This project used a custom-built NMR probe that allows low-temperature NMR in the presence of illumination (the image shows the illuminated spinner module). We have also used this technique to study the behavior of molecules within a restricted environment. Small-molecule endofullerenes are interesting molecular systems in which molecular rotors are confined to a well-insulated, well-defined, and highly symmetric environment. We discuss how cryogenic solid state NMR can give information on the dynamics of ortho-water confined in a fullerene cage. Molecular motions are often connected with fundamental chemical properties; therefore, an understanding of molecular dynamics can be important in fields ranging from material science to biochemistry. We present the case of ibuprofen sodium salt which exhibits different degrees of conformational freedom in different parts of the same molecule, leading to a range of line broadening and line narrowing phenomena as a function of temperature.
[NMR paper] Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Related Articles Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples.
Nat Protoc. 2013 Nov;8(11):2256-70
Authors: Das N, Murray DT, Cross TA
Abstract
nmrlearner
Journal club
0
10-27-2013 12:53 AM
[NMR paper] Magic Angle Spinning NMR of Paramagnetic Proteins.
Magic Angle Spinning NMR of Paramagnetic Proteins.
Related Articles Magic Angle Spinning NMR of Paramagnetic Proteins.
Acc Chem Res. 2013 Mar 18;
Authors: Knight MJ, Felli IC, Pierattelli R, Emsley L, Pintacuda G
Abstract
Metal ions are ubiquitous in biochemical and cellular processes. Since many metal ions are paramagnetic due to the presence of unpaired electrons, paramagnetic molecules are an important class of targets for research in structural biology and related fields. Today, NMR spectroscopy plays a central role in the...
nmrlearner
Journal club
0
03-20-2013 01:47 PM
[NMR paper] Magic-Angle Spinning NMR of Cold Samples.
Magic-Angle Spinning NMR of Cold Samples.
Related Articles Magic-Angle Spinning NMR of Cold Samples.
Acc Chem Res. 2013 Mar 14;
Authors: Concistrč M, Johannessen OG, Carignani E, Geppi M, Levitt MH
Abstract
Magic-angle-spinning solid-state NMR provides site-resolved structural and chemical information about molecules that complements many other physical techniques. Recent technical advances have made it possible to perform magic-angle-spinning NMR experiments at low temperatures, allowing researchers to trap reaction intermediates and to...
nmrlearner
Journal club
0
03-16-2013 03:18 PM
[NMR paper] 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochrom
13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles 13C Magic angle spinning NMR analysis and quantum chemical modeling of the bathochromic shift of astaxanthin in alpha-crustacyanin, the blue carotenoprotein complex in the carapace of the lobster Homarus gammarus.
Biochemistry. 1997 Jun 17;36(24):7288-96...
nmrlearner
Journal club
0
08-22-2010 03:03 PM
[NMR paper] 13C magic angle spinning NMR characterization of the functionally asymmetric QA bindi
13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Related Articles 13C magic angle spinning NMR characterization of the functionally asymmetric QA binding in Rhodobacter sphaeroides R26 photosynthetic reaction centers using site-specific 13C-labeled ubiquinone-10.
Biochemistry. 1995 Aug 15;34(32):10229-36
Authors: van Liemt WB, Boender GJ, Gast P, Hoff AJ, Lugtenburg J, de Groot HJ
Photosynthetic...
nmrlearner
Journal club
0
08-22-2010 03:50 AM
[NMR paper] 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroide
13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Related Articles 13C magic angle spinning NMR evidence for a 15,15'-cis configuration of the spheroidene in the Rhodobacter sphaeroides photosynthetic reaction center.
Biochemistry. 1992 Dec 15;31(49):12446-50
Authors: de Groot HJ, Gebhard R, van der Hoef I, Hoff AJ, Lugtenburg J, Violette CA, Frank HA
The photosynthetic reaction center of Rhodobacter sphaeroides 2.4.1 contains one carotenoid...
nmrlearner
Journal club
0
08-21-2010 11:45 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...
nmrlearner
Journal club
0
08-21-2010 11:12 PM
[NMR paper] 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of r
13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Related Articles 13C magic-angle spinning NMR studies of bathorhodopsin, the primary photoproduct of rhodopsin.
Biochemistry. 1991 Jul 30;30(30):7409-15
Authors: Smith SO, Courtin J, de Groot H, Gebhard R, Lugtenburg J
Magic-angle spinning NMR spectra have been obtained of the bathorhodopsin photointermediate trapped at low temperature (less than 130 K) by using isorhodopsin samples regenerated with retinal specifically 13C-labeled at positions 8,...