BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-09-2013, 08:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,808
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Lineshape-based polarimetry of dynamically-polarized in solid-state mixtures

From The DNP-NMR Blog:

Lineshape-based polarimetry of dynamically-polarized in solid-state mixtures


Kuzma, N.N., et al., Lineshape-based polarimetry of dynamically-polarized in solid-state mixtures. J. Magn. Reson., 2013. 234(0): p. 90-94.


http://dx.doi.org/10.1016/j.jmr.2013.06.008


Dynamic nuclear polarization (DNP) of 15 N 2 O , known for its long-lived singlet-state order at low magnetic field, is demonstrated in organic solvent/trityl mixtures at ~1.5 K and 5 T. Both 15 N polarization and intermolecular dipolar broadening are strongly affected by the sample’s thermal history, indicating spontaneous formation of N2O clusters. In situ 15 N NMR reveals four distinct powder-pattern spectra, attributed to the chemical-shift anisotropy (CSA) tensors of the two 15N nuclei, further split by the intramolecular dipolar coupling between their magnetic moments. 15 N polarization is estimated by fitting the free-induction decay (FID) signals to the analytical model of four single-quantum transitions. This analysis implies ( 10.2 ± 2.2 ) % polarization after 37 h of DNP, and provides a direct, instantaneous probe of the absolute 15 N polarization, without a need for time-consuming referencing to a thermal-equilibrium NMR signal.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR.
Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR. Related Articles Determining the depth of insertion of dynamically invisible membrane peptides by gel-phase (1)H spin diffusion heteronuclear correlation NMR. J Biomol NMR. 2013 Apr 20; Authors: Wang T, Yao H, Hong M Abstract Solid-state NMR determination of the depth of insertion of membrane peptides and proteins has so far utilized (1)H spin diffusion and paramagnetic relaxation enhancement...
nmrlearner Journal club 0 04-23-2013 08:37 PM
[NMR paper] Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation.
Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation. Related Articles Solid-State NMR-Based Approaches for Supramolecular Structure Elucidation. Acc Chem Res. 2013 Apr 15; Authors: Weingarth M, Baldus M Abstract Supramolecular chemistry provides structural and conformational information about complexes formed from multiple molecules. While the molecule is held together by strong intramolecular contacts like covalent bonds, supramolecular structures can be further stabilized by weaker or transient intermolecular...
nmrlearner Journal club 0 04-17-2013 08:15 PM
[NMR paper] Computer-Aided Design of Fragment Mixtures for NMR-Based Screening.
Computer-Aided Design of Fragment Mixtures for NMR-Based Screening. Related Articles Computer-Aided Design of Fragment Mixtures for NMR-Based Screening. PLoS One. 2013;8(3):e58571 Authors: Arroyo X, Goldflam M, Feliz M, Belda I, Giralt E Abstract Fragment-based drug discovery is widely applied both in industrial and in academic screening programs. Several screening techniques rely on NMR to detect binding of a fragment to a target. NMR-based methods are among the most sensitive techniques and have the further advantage of yielding a low...
nmrlearner Journal club 0 03-22-2013 06:10 PM
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra
Solid state NMR of proteins at high MAS frequencies: symmetry-based mixing and simultaneous acquisition of chemical shift correlation spectra Abstract We have carried out chemical shift correlation experiments with symmetry-based mixing sequences at high MAS frequencies and examined different strategies to simultaneously acquire 3D correlation spectra that are commonly required in the structural studies of proteins. The potential of numerically optimised symmetry-based mixing sequences and the simultaneous recording of chemical shift correlation spectra such as: 3D NCAC and 3D NHH...
nmrlearner Journal club 0 11-29-2012 03:14 AM
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy.
Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Dynamically committed, uncommitted, and quenched states encoded in protein kinase A revealed by NMR spectroscopy. Proc Natl Acad Sci U S A. 2011 Apr 6; Authors: Masterson LR, Shi L, Metcalfe E, Gao J, Taylor SS, Veglia G Protein kinase A (PKA) is a ubiquitous phosphoryl transferase that mediates hundreds of cell signaling events. During turnover, its catalytic subunit (PKA-C) interconverts between three major conformational states...
nmrlearner Journal club 0 04-08-2011 10:00 AM
A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field.
A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J Magn Reson. 2011 Jan 21; Authors: Lu GJ, Son WS, Opella SJ A general method for assigning...
nmrlearner Journal club 0 02-15-2011 07:17 PM
A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field
A General Assignment Method for Oriented Sample (OS) Solid-state NMR of Proteins Based on The Correlation of Resonances through Heteronuclear Dipolar Couplings in Samples Aligned Parallel and Perpendicular to the Magnetic Field Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 21 January 2011</br> George J., Lu , Woo Sung, Son , Stanley J., Opella</br> A general method for assigning oriented sample (OS) solid-state NMR spectra of proteins is demonstrated. In principle, this method requires only a single sample of a...
nmrlearner Journal club 0 01-22-2011 03:52 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 02:38 PM.


Map