BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 06-20-2018, 08:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Information-Rich 13C Satellites

Information-Rich 13C Satellites

Seemingly simple NMR spectra often contain much more information than one might think. For example, the 1H NMR spectrum of 1,4-dioxane is primarily a singlet from which one obtains only an isotropic 1H chemical shift value. There is however much more information available in the spectrum which is often not recognized or used. The 1H NMR spectrum of a naturally occurring sample of 1,4-dioxane is the weighted sum of the 1H spectra of all possible isotopomers. It is the dominant tetra-12C isotopomer that gives rise to the singlet but since 13C (spin I = 1/2) is 1.1% naturally abundant, one expects to observe also the mono-13C isotopomer. The di-, tri- and tetra-13C isotopomers are very rare and can be neglected. The symmetry in the mono-13C isotopomer is lost compared to the tetra-12C isotopomer and one obtains a complex second-order spectrum, part of which can be represented by an AA'BB'X spin system. The spectrum of the AA'BB'X spin system depends on many more parameters than just the isotropic 1H chemical shift. This is illustrated in the figure below.

The bottom panel of the figure is the measured 300 MHz 1H NMR spectrum of 1,4-dioxane with an exaggerated vertical scale to accentuate the 13C satellites resulting from the protons color coded in pink in the mono-13C isotopomer. The large central region of the spectrum is the result of all the protons color coded in yellow from both the tetra-12C and mono-13C isotopomers. A simulation of this second-order spectrum was calculated from the parameters below and is shown in the top panel of the figure.
Any isotope shifts in the 1H frequencies due to 13C vs 12C bonding were neglected in the simulation. The fit of the simulation to the 13C satellites is particularly sensitive to 1JC-Ha, 1JC-Hb, 3JHa-Hc, 3JHa-Hd, 3JHb-Hc and 3JHb-Hd and much less sensitive to 2JC-Hc, 2JC-Hd, 2JHa-Hb and 2JHc-Hd. A fit of the simulation to the experimental spectrum produces estimates for all of the coupling constants in the AA'BB'X spin system - much more information than a single 1H isotropic chemical shift!


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Water-Rich Fluid Material Containing Orderly Condensed Proteins
Water-Rich Fluid Material Containing Orderly Condensed Proteins A fluid material with high protein content (120–310 mg mL-1) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled...
nmrlearner Journal club 0 12-19-2016 07:58 PM
[NMR paper] NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm o
NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. Related Articles NMR spectroscopy and chemical studies of an arabinan-rich system from the endosperm of the seed of Gleditsia triacanthos. Carbohydr Res. 2002 Feb 11;337(3):255-63 Authors: Navarro DA, Cerezo AS, Stortz CA Exhaustive extraction of the endosperm from the seed of Gleditsia triacanthos using water at room temperature and 50 degrees C left a residue, which was further extracted at 95 degrees C. Precipitation of...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Sequence-dependent bending of DNA induced by cisplatin: NMR structures of an A.T-rich
Sequence-dependent bending of DNA induced by cisplatin: NMR structures of an A.T-rich 14-mer duplex. Related Articles Sequence-dependent bending of DNA induced by cisplatin: NMR structures of an A.T-rich 14-mer duplex. Chemistry. 2000 Oct 2;6(19):3636-44 Authors: Parkinson JA, Chen Y, del Socorro Murdoch P, Guo Z, Berners-Price SJ, Brown T, Sadler PJ The NMR solution structure of the A.T rich DNA 14-mer duplex d(ATACATGGTACATA).d(TATGTACCATGTAT) is reported. This is compared with the NMR structure of the same duplex intrastrand cross-linked at...
nmrlearner Journal club 0 11-19-2010 08:29 PM
[NMR paper] Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein C
Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. Related Articles Mutational analysis and NMR spectroscopy of quail cysteine and glycine-rich protein CRP2 reveal an intrinsic segmental flexibility of LIM domains. J Mol Biol. 1999 Oct 1;292(4):893-908 Authors: Kloiber K, Weiskirchen R, Kräutler B, Bister K, Konrat R The LIM domain is a conserved cysteine and histidine-containing structural module of two tandemly arranged zinc fingers. It has been...
nmrlearner Journal club 0 11-18-2010 08:31 PM
[NMR paper] NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli Dna
NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone. J Mol Biol. 1996 Jul 12;260(2):236-50 Authors: Pellecchia M, Szyperski T, Wall D, Georgopoulos C, Wüthrich K The recombinant N-terminal 107-amino acid polypeptide fragment 2-108 of the DnaJ molecular chaperone of Escherichia...
nmrlearner Journal club 0 08-22-2010 02:20 PM
[NMR paper] Study of the interaction between salivary proline-rich proteins and a polyphenol by 1
Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur J Biochem. 1994 Feb 1;219(3):923-35 Authors: Murray NJ, Williamson MP, Lilley TH, Haslam E The interaction between salivary proline-rich proteins and plant polyphenols...
nmrlearner Journal club 0 08-22-2010 03:33 AM
[NMR paper] Study of the interaction between salivary proline-rich proteins and a polyphenol by 1
Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles Study of the interaction between salivary proline-rich proteins and a polyphenol by 1H-NMR spectroscopy. Eur J Biochem. 1994 Feb 1;219(3):923-35 Authors: Murray NJ, Williamson MP, Lilley TH, Haslam E The interaction between salivary proline-rich proteins and plant polyphenols...
nmrlearner Journal club 0 08-22-2010 03:33 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:43 AM.


Map