BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 01-24-2017, 08:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,734
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Improved 1H Resolution with 14N Decoupling

Improved 1H Resolution with 14N Decoupling

The J coupling between 13C and quadrupolar nuclides can be resolved, for example, in the cases of the 13C NMR spectra of deuterated compounds, some cobalt complexes and some tetraalkyl ammonium salts. The ability to resolve the coupling depends on the relaxation rates among the Zeeman levels of the quadrupolar nuclide with respect to the reciprocal coupling constant. When the relaxation is slow, the J coupling can be resolved and when it is very fast, the 13C is a sharp singlet and said to be "self decoupled". When the relaxation rates among the Zeeman levels of the quadrupolar nuclide are on the same order of the coupling constant, the NMR resonance of the 13C will be broadened. This is a very common observation for the 13C resonances of nitrogen bearing carbons. It is also possible to see broadened 1H or 19F resonances due to coupling to 14N. Such is the case for the resonances of the proton on C6 and the fluorine on C2 in 2,3-difluoropyridine as can be seen from the figure below which clearly shows these resonances broadened compared to the resonances of 1H or 19F further removed from the nitrogen.
The broadening of the resonance of the 1H on C6 can be reduced by applying 14N decoupling during the acquisition time, thus providing much improved resolution. This is demonstrated in the figure below.



Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling.
Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Related Articles Enhancing the resolution of multi-dimensional heteronuclear NMR spectra of intrinsically disordered proteins by homonuclear broadband decoupling. Chem Commun (Camb). 2013 Dec 23; Authors: Helge Meyer N, Zangger K Abstract Limited spectral resolution in the proton dimension of NMR spectra is a severe problem in intrinsically disordered proteins. Here we show that homonuclear...
nmrlearner Journal club 0 12-25-2013 03:39 PM
[NMR paper] Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins
Homonuclear decoupling for enhancing resolution and sensitivity in NOE and RDC measurements of peptides and proteins Publication date: Available online 22 November 2013 Source:Journal of Magnetic Resonance</br> Author(s): Jinfa Ying , Julien Roche , Ad Bax</br> Application of band-selective homonuclear (BASH) 1H decoupling pulses during acquisition of the 1H free induction decay is shown to be an efficient procedure for removal of scalar and residual dipolar couplings between amide and aliphatic protons. BASH decoupling can be applied in both dimensions of a...
nmrlearner Journal club 0 11-23-2013 04:05 AM
[NMR paper] Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins.
Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins. Long-observation-window band-selective homonuclear decoupling: Increased sensitivity and resolution in solid-state NMR spectroscopy of proteins. J Magn Reson. 2013 Sep 13;236C:89-94 Authors: Struppe JO, Yang C, Wang Y, Hernandez RV, Shamansky LM, Mueller LJ Abstract
nmrlearner Journal club 0 10-08-2013 02:04 PM
[NMR paper] Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins
Long-Observation-Window Band-Selective Homonuclear Decoupling: Increased Sensitivity and Resolution in Solid-State NMR Spectroscopy of Proteins Publication date: Available online 13 September 2013 Source:Journal of Magnetic Resonance</br> Author(s): Jochem O. Struppe , Chen Yang , Yachong Wang , Roy V. Hernandez , Lisa M. Shamansky , Leonard J. Mueller</br> Sensitivity and resolution are the two fundamental obstacles to extending solid-state nuclear magnetic resonance to even larger protein systems. Here, a novel long-observation-window band-selective...
nmrlearner Journal club 0 09-13-2013 12:05 PM
[NMR paper] Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy.
Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--link.aip.org-jhtml-linkto.gif Related Articles Refocused continuous-wave decoupling: a new approach to heteronuclear dipolar decoupling in solid-state NMR spectroscopy. J Chem Phys. 2012 Dec 7;137(21):214202 Authors: Vinther JM, Nielsen AB, Bjerring M, van Eck ER, Kentgens AP, Khaneja N, Nielsen NC Abstract A novel strategy for heteronuclear dipolar...
nmrlearner Journal club 0 06-01-2013 02:03 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR.
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR. J Magn Reson. 2010 Dec 31; Authors: Comellas G, Lopez JJ, Nieuwkoop AJ, Lemkau LR, Rienstra CM We describe a simple yet highly effective optimization strategy for SPINAL-64 (1)H decoupling conditions for magic-angle spinning solid-state NMR. With...
nmrlearner Journal club 0 02-08-2011 06:28 PM
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR
Straightforward, effective calibration of SPINAL-64 decoupling results in the enhancement of sensitivity and resolution of biomolecular solid-state NMR Publication year: 2010 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 31 December 2010</br> Gemma, Comellas , Jakob J., Lopez , Andrew J., Nieuwkoop , Luisel R., Lemkau , Chad M., Rienstra</br> We describe a simple yet highly effective optimization strategy for SPINAL-64 1H decoupling conditions for magic-angle spinning solid-state NMR. With adjustment of the phase angles in a coupled manner,...
nmrlearner Journal club 0 01-01-2011 08:57 AM
[NMR paper] High-resolution NMR study of a GdAGA tetranucleotide loop that is an improved substra
High-resolution NMR study of a GdAGA tetranucleotide loop that is an improved substrate for ricin, a cytotoxic plant protein. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-custom-oxfordjournals_final_free.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles High-resolution NMR study of a GdAGA tetranucleotide loop that is an improved substrate for ricin, a cytotoxic plant protein. Nucleic Acids Res. 1996 Feb 15;24(4):611-8...
nmrlearner Journal club 0 08-22-2010 02:27 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 03:42 AM.


Map