Kiswandhi, A., et al., Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical. Phys. Chem. Chem. Phys., 2016. 18(31): p. 21351-21359.
We have investigated the effects of Ho-DOTA doping on the dynamic nuclear polarization (DNP) of [1-13C] sodium acetate using trityl OX063 free radical at 3.35 T and 1.2 K. Our results indicate that addition of 2 mM Ho-DOTA on 3 M [1-13C] sodium acetate sample in 1 : 1 v/v glycerol : water with 15 mM trityl OX063 improves the DNP-enhanced 13C solid-state nuclear polarization by a factor of around 2.7-fold. Similar to the Gd3+ doping effect on 13C DNP, the locations of the positive and negative 13C maximum polarization peaks in the 13C microwave DNP sweep are shifted towards each other with the addition of Ho-DOTA on the DNP sample. W-band electron spin resonance (ESR) studies have revealed that while the shape and linewidth of the trityl OX063 ESR spectrum was not affected by Ho3+-doping, the electron spin-lattice relaxation time T1 of trityl OX063 was prominently reduced at cryogenic temperatures. The reduction of trityl OX063 electron T1 by Ho-doping is linked to the 13C DNP improvement in light of the thermodynamic picture of DNP. Moreover, the presence of Ho-DOTA in the dissolution liquid at room temperature has negligible reduction effect on liquid-state 13C T1, in contrast to Gd3+-doping which drastically reduces the 13C T1. The results here suggest that Ho3+-doping is advantageous over Gd3+ in terms of preservation of hyperpolarized state-an important aspect to consider for in vitro and in vivo NMR or imaging (MRI) experiments where a considerable preparation time is needed to administer the hyperpolarized 13C liquid.
Essentials of Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Essentials of Dynamic Nuclear Polarization #DNPNMR
Dear Colleague,
It is my pleasure to announce that a limited edition of
`Essentials of Dynamic Nuclear Polarization'
is now available at the UK branch of Amazon: www.amazon.co.uk
nmrlearner
News from NMR blogs
0
05-25-2016 02:30 AM
Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals
From The DNP-NMR Blog:
Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals
Mathies, G., et al., Efficient Dynamic Nuclear Polarization at 800 MHz/527 GHz with Trityl-Nitroxide Biradicals. Angew Chem Int Ed Engl, 2015: p. n/a-n/a.
http://www.ncbi.nlm.nih.gov/pubmed/26268156
nmrlearner
News from NMR blogs
0
08-31-2015 09:39 PM
Self-assembled trityl radical capsules--implications for dynamic nuclear polarization
From The DNP-NMR Blog:
Self-assembled trityl radical capsules--implications for dynamic nuclear polarization
Marin-Montesinos, I., et al., Self-assembled trityl radical capsules--implications for dynamic nuclear polarization. Phys Chem Chem Phys, 2015. 17(8): p. 5785-94.
http://www.ncbi.nlm.nih.gov/pubmed/25626422
nmrlearner
News from NMR blogs
0
04-29-2015 03:49 PM
Radical-free dynamic nuclear polarization using electronic defects in silicon
From The DNP-NMR Blog:
Radical-free dynamic nuclear polarization using electronic defects in silicon
Cassidy, M.C., et al., Radical-free dynamic nuclear polarization using electronic defects in silicon. Physical Review B, 2013. 87(16): p. 161306.
http://link.aps.org/doi/10.1103/PhysRevB.87.161306
nmrlearner
News from NMR blogs
0
09-19-2014 03:07 PM
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
From The DNP-NMR Blog:
Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin
Walker, S.A., et al., Temperature dependence of high field 13C dynamic nuclear polarization processes with trityl radicals below 35 Kelvin. Phys. Chem. Chem. Phys., 2013.
http://dx.doi.org/10.1039/C3CP51628H
nmrlearner
News from NMR blogs
0
09-06-2013 06:52 PM
Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP
From The DNP-NMR Blog:
Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP
Lumata, L., et al., Electron spin resonance studies of trityl OX063 at a concentration optimal for DNP. Phys. Chem. Chem. Phys., 2013. 15(24): p. 9800-9807.
http://dx.doi.org/10.1039/C3CP50186H
nmrlearner
News from NMR blogs
0
06-10-2013 05:30 PM
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
From the The DNP-NMR Blog:
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
Michaelis, V.K., et al., High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture. J Am Chem Soc, 2013.
http://www.ncbi.nlm.nih.gov/pubmed/23373472