p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Harris, T., H. Degani, and L. Frydman, Hyperpolarized 13C NMR studies of glucose metabolism in living breast cancer cell cultures. NMR Biomed, 2013. 26(12): p. 1831-43.
The recent development of dissolution dynamic nuclear polarization (DNP) gives NMR the sensitivity to follow metabolic processes in living systems with high temporal resolution. In this article, we apply dissolution DNP to study the metabolism of hyperpolarized U-(13)C,(2)H7-glucose in living, perfused human breast cancer cells. Spectrally selective pulses were used to maximize the signal of the main product, lactate, whilst preserving the glucose polarization; in this way, both C1-lactate and C3-lactate could be observed with high temporal resolution. The production of lactate by T47D breast cancer cells can be characterized by Michaelis-Menten-like kinetics, with K(m) = 3.5 +/- 1.5 mM and V(max) = 34 +/- 4 fmol/cell/min. The high sensitivity of this method also allowed us to observe and quantify the glycolytic intermediates dihydroxyacetone phosphate and 3-phosphoglycerate. Even with the enhanced DNP signal, many other glycolytic intermediates could not be detected directly. Nevertheless, by applying saturation transfer methods, the glycolytic intermediates glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, glyceraldehyde-3-phosphate, phosphoenolpyruvate and pyruvate could be observed indirectly. This method shows great promise for the elucidation of the distinctive metabolism and metabolic control of cancer cells, suggesting multiple ways whereby hyperpolarized U-(13)C,(2)H7-glucose NMR could aid in the diagnosis and characterization of cancer in vivo.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR
From The DNP-NMR Blog:
Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Dzien, P., et al., Following Metabolism in Living Microorganisms by Hyperpolarized (1)H NMR. J Am Chem Soc, 2016. 138(37): p. 12278-86.
https://www.ncbi.nlm.nih.gov/pubmed/27556338
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
Imaging metabolism with hyperpolarized (13)c-labeled cell substrates
From The DNP-NMR Blog:
Imaging metabolism with hyperpolarized (13)c-labeled cell substrates
Brindle, K.M., Imaging metabolism with hyperpolarized (13)c-labeled cell substrates. J Am Chem Soc, 2015. 137(20): p. 6418-27.
http://www.ncbi.nlm.nih.gov/pubmed/25950268
nmrlearner
News from NMR blogs
0
06-15-2015 02:45 PM
[NMR paper] Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary_FullTextOnline_120x27.gif Related Articles Real-Time Monitoring of Cancer Cell Metabolism and Effects of an Anticancer Agent using 2D In-Cell NMR Spectroscopy.
Angew Chem Int Ed Engl. 2015 Mar 5;
Authors: Wen H, An YJ, Xu WJ, Kang KW, Park S
Abstract
Altered metabolism is a critical part of...
nmrlearner
Journal club
0
03-11-2015 09:59 PM
[NMR paper] Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.
Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--highwire.stanford.edu-icons-externalservices-pubmed-standard-jbc_final.gif Related Articles Simultaneous steady-state and dynamic 13C NMR can differentiate alternative routes of pyruvate metabolism in living cancer cells.
J Biol Chem. 2014 Feb 28;289(9):6212-24
Authors: Yang C, Harrison C, Jin ES, Chuang DT, Sherry AD, Malloy CR, Merritt ME,...
nmrlearner
Journal club
0
04-26-2014 05:46 PM
Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research
From The DNP-NMR Blog:
Analysis of Cancer Metabolism by Imaging Hyperpolarized Nuclei: Prospects for Translation to Clinical Research
Kurhanewicz, J., et al., Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia, 2011. 13(2): p. 81-97.
http://www.ncbi.nlm.nih.gov/pubmed/21403835