BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-15-2013, 08:52 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,795
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Hyperpolarized (13) C-labelled anhydrides as DNP precursors of metabolic MRI agents

From the The DNP-NMR Blog:

Hyperpolarized (13) C-labelled anhydrides as DNP precursors of metabolic MRI agents

Colombo Serra, S., et al., Hyperpolarized 13C-labelled anhydrides as DNP precursors of metabolic MRI agents. Contrast Media & Molecular Imaging, 2012. 7(5): p. 469-477.


http://www.ncbi.nlm.nih.gov/pubmed/22821881


The extraordinary enhancement of the nuclear magnetic resonance (NMR) signal that can be obtained by dynamic nuclear polarization (DNP) techniques is prompting new avenues of research based on the in vivo detection of metabolic abnormalities associated with the onset and progression of human diseases. (13) C-labelled short-chain fatty acids appear to be interesting candidates for this novel class of metabolic-active contrast agents (MCAs), as they have been shown to report on metabolic differences between healthy and ischaemic tissues in mice. In spite of their promising biological efficacy, the formulations of short-chain fatty acids that fulfil the many technical constraints of the DNP procedure, as it is today, may limit their clinical potential. New solutions have been sought to circumvent technology-related challenges and facilitate clinical translation of these molecules. In particular, it has been shown that, by using symmetric anhydrides as chemical precursors for short-chain fatty acids, no glass-forming additives are needed in the DNP formulations. Furthermore, novel esterified trityl radicals and lipophilic gadolinium complexes allow easy removal of the polarization-promoting additives at the end of the DNP process. By applying the three concepts reported, we have succeeded in preparing aqueous formulations of short-chain fatty acids for pharmaceutical use that have favourable properties compared with those obtained from current procedures. The use of organic derivatives as chemical precursors of the MCA of interest appears to be a generally valid concept, not restricted to symmetric anhydrides of fatty acids, which can markedly improve the clinical potential of other (13) C-labelled compounds.









Go to the The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging
From the The DNP-NMR Blog: Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging Park, J.M., et al., Metabolic response of glioma to dichloroacetate measured in vivo by hyperpolarized 13C magnetic resonance spectroscopic imaging. Neuro-Oncology, 2013. 15(4): p. 433-41. http://neuro-oncology.oxfordjournals.org/content/early/2013/01/16/neuonc.nos319.abstract
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
[NMR paper] Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors.
Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors. Related Articles Expanding the Repertoire of Amyloid Polymorphs by Co-polymerization of Related Protein Precursors. J Biol Chem. 2013 Jan 17; Authors: Sarell CJ, Woods LA, Su Y, Debelouchina GT, Ashcroft AE, Griffin RG, Stockley PG, Radford SE Abstract Amyloid fibrils can be generated from proteins with diverse sequences and folds. While amyloid fibrils assembled in vitro commonly involve a single protein precursor, fibrils formed in vivo can...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Using Solid-State NMRTo Monitor the Molecular Consequencesof Cryptococcus neoformans Melanization with DifferentCatecholamine Precursors
Using Solid-State NMRTo Monitor the Molecular Consequencesof Cryptococcus neoformans Melanization with DifferentCatecholamine Precursors http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/bichaw/0/bichaw.ahead-of-print/bi300325m/aop/images/medium/bi-2012-00325m_0005.gif Biochemistry DOI: 10.1021/bi300325m http://feeds.feedburner.com/~ff/acs/bichaw?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/bichaw/~4/XNxzJQp9Uz4 More...
nmrlearner Journal club 0 07-25-2012 09:34 PM
MRI contrast agents based on dysprosium or holmium
MRI contrast agents based on dysprosium or holmium Publication year: 2011 Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 59, Issue 1</br> Ma?gorzata Norek, Joop A. Peters</br> </br> </br></br>
nmrlearner Journal club 0 03-09-2012 09:16 AM
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting.
Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. Mutations in the Saccharomyces cerevisiae succinate dehydrogenase result in distinct metabolic phenotypes revealed through (1)H NMR-based metabolic footprinting. J Proteome Res. 2010 Dec 3;9(12):6729-39 Authors: Szeto SS, Reinke SN, Sykes BD, Lemire BD Metabolomics is a powerful method of examining the intricate connections between mutations, metabolism, and disease. Metabolic...
nmrlearner Journal club 0 05-25-2011 07:01 PM
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors
Solid-State 91Zr NMR Spectroscopy Studies of Zirconocene Olefin Polymerization Catalyst Precursors Aaron J. Rossini, Ivan Hung, Samuel A. Johnson, Carla Slebodnick, Mike Mensch, Paul A. Deck and Robert W. Schurko http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja107749b/aop/images/medium/ja-2010-07749b_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja107749b http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/GGw8Igo70Jo
nmrlearner Journal club 0 12-03-2010 08:52 PM
[NMR paper] Contrast agents for magnetic resonance angiographic applications: 1H and 17O NMR rela
Contrast agents for magnetic resonance angiographic applications: 1H and 17O NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin. Related Articles Contrast agents for magnetic resonance angiographic applications: 1H and 17O NMR relaxometric investigations on two gadolinium(III) DTPA-like chelates endowed with high binding affinity to human serum albumin. J Biol Inorg Chem. 1999 Dec;4(6):766-74 Authors: Aime S, Chiaussa M, Digilio G, Gianolio E, Terreno E The...
nmrlearner Journal club 0 11-18-2010 08:31 PM
MRI contrast agents based on dysprosium or holmium
MRI contrast agents based on dysprosium or holmium Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 7 September 2010</br> Ma?gorzata, Norek , Joop A., Peters</br> More...
nmrlearner Journal club 0 09-08-2010 12:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:06 AM.


Map