During the three decades 1980-2010, magic angle spinning (MAS) NMR developed into the method of choice to examine many chemical, physical, and biological problems. In particular, a variety of dipolar recoupling methods to measure distances and torsion angles can now constrain molecular structures to high resolution. However, applications are often limited by the low sensitivity of the experiments, due in large part to the necessity of observing spectra of low-gamma nuclei such as the I = 1/2 species 13C or 15N. The difficulty is still greater when quadrupolar nuclei, such as 17O or 27Al, are involved. This problem has stimulated efforts to increase the sensitivity of MAS experiments. A particularly powerful approach is dynamic nuclear polarization (DNP) which takes advantage of the higher equilibrium polarization of electrons (which conventionally manifests in the great sensitivity advantage of EPR over NMR). In DNP, the sample is doped with a stable paramagnetic polarizing agent and irradiated with microwaves to transfer the high polarization in the electron spin reservoir to the nuclei of interest. The idea was first explored by Overhauser and Slichter in 1953. However, these experiments were carried out on static samples, at magnetic fields that are low by current standards. To be implemented in contemporary MAS NMR experiments, DNP requires microwave sources operating in the subterahertz regime, roughly 150-660 GHz, and cryogenic MAS probes. In addition, improvements were required in the polarizing agents, because the high concentrations of conventional radicals that are required to produce significant enhancements compromise spectral resolution. In the last two decades, scientific and technical advances have addressed these problems and brought DNP to the point where it is achieving wide applicability. These advances include the development of high frequency gyrotron microwave sources operating in the subterahertz frequency range. In addition, low temperature MAS probes were developed that permit in situ microwave irradiation of the samples. And, finally, biradical polarizing agents were developed that increased the efficiency of DNP experiments by factors of approximately 4 at considerably lower paramagnet concentrations. Collectively, these developments have made it possible to apply DNP on a routine basis to a number of different scientific endeavors, most prominently in the biological and material sciences. This Account reviews these developments, including the primary mechanisms used to transfer polarization in high frequency DNP, and the current choice of microwave sources and biradical polarizing agents. In addition, we illustrate the utility of the technique with a description of applications to membrane and amyloid proteins that emphasizes the unique structural information that is available in these two cases.
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
From the The DNP-NMR Blog:
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
Michaelis, V.K., et al., High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture. J Am Chem Soc, 2013.
http://www.ncbi.nlm.nih.gov/pubmed/23373472
nmrlearner
News from NMR blogs
0
04-15-2013 08:52 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
January 2013
Publication year: 2013
Source:Journal of Magnetic Resonance, Volume 226</br>
</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25K and 9.4Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier , but also includes a corrugated waveguide for transmission of microwaves from...
nmrlearner
Journal club
0
12-15-2012 09:51 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids
July 2012
Publication year: 2012
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br>
</br>
Graphical abstract
nmrlearner
Journal club
0
12-15-2012 09:51 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Available online 20 November 2012
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) , but also includes a...
nmrlearner
Journal club
0
12-01-2012 06:10 PM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids
July 2012
Publication year: 2012
Source:Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 64</br>
</br>
Graphical abstract
nmrlearner
Journal club
0
12-01-2012 06:10 PM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kent R. Thurber, Alexey Potapov, Wai-Ming Yau, Robert Tycko</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) ,...
nmrlearner
Journal club
0
11-21-2012 04:33 AM
Dynamic nuclear polarization at high magnetic fields in liquids
Dynamic nuclear polarization at high magnetic fields in liquids
Publication year: 2011
Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br>
C. Griesinger, M. Bennati, H.M. Vieth, C. Luchinat, G. Parigi, P. Höfer, F. Engelke, S.J. Glaser, V. Denysenkov, T.F. Prisner</br>
Graphical Abstract
http://ars.sciencedirect.com/content/image/1-s2.0-S0079656511000689-fx1.jpg Graphical abstract Highlights
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids
Dynamic Nuclear Polarization at High Magnetic Fields in Liquids
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, Available online 4 November 2011</br>
C.*Griesinger, M.*Bennati, H.M.*Vieth, C.*Luchinat, G.*Parigi, ...</br>
Highlights
? High field Dynamic Nuclear Polarization spectrometers for liquid samples have been constructed, working at 7, 9.2 and 14 T, respectively. ? The field dependence of the Overhauser DNP efficiency has been measured experimentally for the first time up to a field of 9.2 T and compared with experimental results from...