BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 04-22-2011, 03:01 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Heteronuclear Double Quantum Filters

Heteronuclear Double Quantum Filters

Double quantum filters are used to filter out single quantum magnetization and allow the passage of double quantum magnetization. In the proton observe heteronuclear case, the double quantum filter (like the BIRD filter) allows the selective observation of the weak satellite signals from protons coupled to dilute spin I = 1/2 X nuclei (e.g. X = 13C, 15N, 29Si ....) but rejects the strong singlets from the uncoupled protons in the vicinity of 12C, self decoupled 14N, and 28Si . The figure below illustrates the heteronuclear double quantum filter described by Stefan Berger and Siegmar Braun in 200 and More NMR Experiments applied to the 1H NMR spectrum of tetramethylsilane. The bottom trace of the figure shows a conventional 1H NMR spectrum. The middle trace was collected using a 1H-29Si double quantum filter and shows only the 1H-29Si doublet. The top trace was collected using a 1H-13C double quantum filter and show only the 1H-13C doublet. In both cases there is excellent suppression of the 1H singlet signal.



Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Origin and removal of mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single quantum correlation spectra
Origin and removal of mixed-phase artifacts in gradient sensitivity enhanced heteronuclear single quantum correlation spectra Abstract Here we describe phasing anomalies observed in gradient sensitivity enhanced 15N-1H HSQC spectra, and analyze their origin. It is shown that, as a result of 15N off-resonance effects, dispersive contributions to the 1H signal become detectable, and lead to 15N-offset dependent phase errors. Strategies that effectively suppress these artifacts are presented. Content Type Journal Article Category Article Pages 199-207
nmrlearner Journal club 0 09-30-2011 08:01 PM
[CNS Yahoo group] Double protonated His side chains have charge +1 independent of pH
Double protonated His side chains have charge +1 independent of pH Hi all, I am using ccpn/aria/cns combination for my structural work. I discovered a probably bad fact during the aria/cns structure calculation. In the ccpn More...
nmrlearner News from other NMR forums 0 01-20-2011 03:28 AM
[NMR paper] Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy.
Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Related Articles Structural studies of biomaterials using double-quantum solid-state NMR spectroscopy. Annu Rev Phys Chem. 2003;54:531-71 Authors: Drobny GP, Long JR, Karlsson T, Shaw W, Popham J, Oyler N, Bower P, Stringer J, Gregory D, Mehta M, Stayton PS Proteins directly control the nucleation and growth of biominerals, but the details of molecular recognition at the protein-biomineral interface remain poorly understood. The elucidation of recognition...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral
Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width. Related Articles Solid-state dipolar INADEQUATE NMR spectroscopy with a large double-quantum spectral width. J Magn Reson. 1999 Jan;136(1):86-91 Authors: Hong M A technique for obtaining dipolar-mediated INADEQUATE NMR spectra with a large spectral window in the double-quantum dimension is presented. Using the dipolar recoupling sequence C7 to excite the double-quantum coherence under magic-angle spinning, the technique involves incrementing the...
nmrlearner Journal club 0 11-18-2010 07:05 PM
[NMR paper] Double and triple resonance NMR methods for protein assignment.
Double and triple resonance NMR methods for protein assignment. Related Articles Double and triple resonance NMR methods for protein assignment. Methods Mol Biol. 1997;60:29-52 Authors: Whitehead B, Craven CJ, Waltho JP
nmrlearner Journal club 0 08-22-2010 03:31 PM
[NMR paper] Double and triple resonance NMR methods for protein assignment.
Double and triple resonance NMR methods for protein assignment. Related Articles Double and triple resonance NMR methods for protein assignment. Methods Mol Biol. 1997;60:29-52 Authors: Whitehead B, Craven CJ, Waltho JP
nmrlearner Journal club 0 08-22-2010 03:03 PM
[NMR paper] Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double
Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Related Articles Assignment of the side-chain 1H and 13C resonances of interleukin-1 beta using double- and triple-resonance heteronuclear three-dimensional NMR spectroscopy. Biochemistry. 1990 Sep 4;29(35):8172-84 Authors: Clore GM, Bax A, Driscoll PC, Wingfield PT, Gronenborn AM The assignment of the aliphatic 1H and 13C resonances of IL-1 beta, a protein of 153 residues and molecular...
nmrlearner Journal club 0 08-21-2010 11:04 PM
Double quantum filtering homonuclear MAS NMR correlation spectra: a tool for membrane protein studies
Double quantum filtering homonuclear MAS NMR correlation spectra: a tool for membrane protein studies Jakob J. Lopez, Christoph Kaiser, Sarika Shastri and Clemens Glaubitz Journal of Biomolecular NMR; 2008; 41(2) pp 97 - 104 Abstract: 13C homonuclear correlation spectra based on proton driven spin diffusion (PDSD) are becoming increasingly important for obtaining distance constraints from multiply labeled biomolecules by MAS NMR. One particular challenging situation arises when such constraints are to be obtained from spectra with a large natural abundance signal background which...
linawaed Journal club 0 08-04-2008 04:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:08 AM.


Map