BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 08:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Gradient Spin Echoes for Selective Excitation

Gradient Spin Echoes for Selective Excitation

Shaped excitation pulses can replace the non-selective hard pulses typically used in a one-pulse measurement to achieve selective excitation. Another method of achieving selective excitation is the gradient spin echo using a selective 180° pulse. This technique is demonstrated in the figure below. A non-selective hard 90°x pulse is first given followed by a pair of identical pulsed field gradients sandwiching a soft selective 180° pulse about the y axis. The hard 90° pulse rotates all spin vectors onto the -y axis. During the first gradient pulse the spin vectors dephase and evolve according to their offset frequencies. The soft 180°y pulse flips a single resonance 180° about the y axis leaving all other resonances untouched. During the second gradient pulse, the "selected" resonance is rephased and its offset frequency evolution is refocused. The unselected resonances dephase more and continue to evolve according to their offset frequencies. The receiver is then turned on to collect the FID of the "selected" resonance, all others are dephased and therefore suppressed. This is demonstrated in the figure below which shows 1H NMR spectra for a mixture of methylence chloride and acetone. The bottom trace shows a standard one-pulse measurement. The middle and top traces show results from a selective gradient spin echo measurement with the selective 180° pulse set for methylene chloride and acetone, respectively.



Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
NMR Excitation, Dephasing and Spin Echoes
NMR Excitation, Dephasing and Spin Echoes http://i.ytimg.com/vi/KtWnmFg-u5g/default.jpg NMR Excitation, Dephasing and Spin Echoes This short animation shows the process of NMR excitation in the laboratory and the rotating frame, as well as the dephasing that occurs from field inhomogeneity and the formation of the Hahn spin echo. Please credit (c)2010 Mark Cohen (mscohen@ucla.edu) during re-use. From:markcat3t Views:8653 http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner NMR educational videos 0 01-29-2012 07:45 PM
Orientation Selective DEER Measurements on Vinculin Tail at X-Band Frequencies Reveal Spin Label Orientations
Orientation Selective DEER Measurements on Vinculin Tail at X-Band Frequencies Reveal Spin Label Orientations Publication year: 2012 Source: Journal of Magnetic Resonance, Available online 8 January 2012</br> Christoph*Abé, Daniel*Klose, Franziska*Dietrich, Wolfgang H.*Ziegler, Yevhen*Polyhach, ...</br> Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also depend on the mutual orientation of...
nmrlearner Journal club 0 01-10-2012 03:38 PM
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR.
Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson. 2011 Mar 17; Authors: Traaseth NJ, Veglia G We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR...
nmrlearner Journal club 0 04-13-2011 11:57 PM
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR
Frequency-Selective Heteronuclear Dephasing and Selective Carbonyl Labeling to Deconvolute Crowded Spectra of Membrane Proteins By Magic Angle Spinning NMR Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 17 March 2011</br> Nathaniel J., Traaseth , Gianluigi, Veglia</br> We present a new method that combines carbonyl-selective labeling with frequency-selective heteronuclear recoupling to resolve the spectral overlap of magic angle spinning (MAS) NMR spectra of membrane proteins in fluid lipid membranes with broad lines and...
nmrlearner Journal club 0 03-18-2011 06:43 AM
[NMR paper] Highly selective excitation in biomolecular NMR by frequency-switched single-transiti
Highly selective excitation in biomolecular NMR by frequency-switched single-transition cross-polarization. Related Articles Highly selective excitation in biomolecular NMR by frequency-switched single-transition cross-polarization. J Am Chem Soc. 2002 Mar 13;124(10):2076-7 Authors: Ferrage F, Eykyn TR, Bodenhausen G A new method for selective excitation in biomolecular NMR uses two-fold single-transition cross-polarization between protons and nitrogen-15 or carbon-13 nuclei. Switching the frequencies between the forward and backward transfer...
nmrlearner Journal club 0 11-24-2010 08:49 PM
[NMR paper] Spin-state-selective TPPI: a new method for suppression of heteronuclear coupling con
Spin-state-selective TPPI: a new method for suppression of heteronuclear coupling constants in multidimensional NMR experiments. Related Articles Spin-state-selective TPPI: a new method for suppression of heteronuclear coupling constants in multidimensional NMR experiments. J Magn Reson. 1999 Aug;139(2):443-6 Authors: Schulte-Herbrüggen T, Briand J, Meissner A, Sřrensen OW A novel multidimensional NMR pulse sequence tool, spin-state-selective time-proportional phase incrementation (S(3) TPPI), is introduced. It amounts to application of...
nmrlearner Journal club 0 11-18-2010 08:31 PM
Introductory NMR & MRI: Video 06: Spin echoes, CPMG and T2 relaxation
Introductory NMR & MRI: Video 06: Spin echoes, CPMG and T2 relaxation http://i.ytimg.com/vi/B2HMAJQJ7ok/default.jpg Introductory NMR & MRI: Video 06: Spin echoes, CPMG and T2 relaxation Paul Callaghan gives an introduction to NMR and MRI. This is the 6th video of a 10 episode series produced by Magritek Ltd. From: magritek Views: 7207 http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner NMR educational videos 0 08-18-2010 01:38 AM
Self-diffusion in Polymer Systems studied by Magnetic Field-Gradient Spin-Echo NMR Me
Self-diffusion in Polymer Systems studied by Magnetic Field-Gradient Spin-Echo NMR Methods Publication year: 2010 Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 13 April 2010</br> Harald, Walderhaug , Olle, Söderman , Daniel, Topgaard</br> More...
nmrlearner Journal club 0 08-16-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:46 PM.


Map