BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 10-24-2013, 08:04 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Fslg cp hetcor

FSLG CP HETCOR

Solid-state 1H MAS NMR spectra with resolution comparable to that obtained for liquids, are difficult (if not impossible) to obtain. The main problem is that magic angle spinning is unable to average the homonuclear 1H dipolar coupling interaction to zero. The combined use of MAS and multiple pulse decoupling schemes (CRAMPS) can be used to improve the resolution. In this case, the 1H FID is sampled during windows of the multiple pulse decoupling scheme where pulses are not being delivered, however the attainable resolution is still much less that that observed for liquids where the rapid molecular tumbling reduces the homonuclear dipolar interaction to zero. Furthermore, CRAMPS experiments can be difficult to setup and run. An alternative method of obtaining "high resolution" solid-state 1H NMR spectra (with resolution comparable to that of a CRAMPS spectrum) is a frequency switched Lee-Goldburg cross polarization heteronuclear correlation experiment (FSLG CP HETCOR) where the 1H spectrum is obtained in the indirect dimension of a 2D experiment.

In this pulse scheme, used in conjunction with MAS, 1H magnetization is aligned at the magic angle and subjected to FSLG decoupling where it is forced to precess about a field oriented at the magic angle by using 2? pulses with carefully chosen offset frequencies. The ideal effect is to average the homonuclear dipolar coupling to zero. The FSLG decoupling train serves as the evolution time (t1) in a 2D data collection scheme. During the variable evolution period the 1H chemical shifts evolve while the heteronuclear dipolar coupling is averaged by MAS and the homonuclear dipolar coupling is averaged by both the MAS and the FSLG pulse train. The 1H magnetization is then returned to the transverse axis and cross polarization (CP) is used to transfer the frequency encoded proton magnetization to 13C. The 13C FID is observed while 1H heteronuclear decoupling is applied. If CP contact times are chosen sufficiently short, one obtains a 2D 13C-1H dipolar correlation map with correlations present between carbon resonances and the protons to which they are most strongly dipolar coupled. If longer contact times are used, more correlations will appear resulting from longer range dipolar couplings and 1H spin diffusion. In either case, the 1H projection of the data represents a high resolution 1H spectrum of the sample with resolution comparable to or better than a CRAMPS spectrum. The figure below shows FSLG 13C-1H CP HETCOR spectra for Dianin's compound acquired on a 200 MHz spectrometer using a spinning speed of 5 kHz.

The spectrum on the right was acquired with a 50 µsec contact time and shows the aromatic carbon resonances correlated to aromatic proton resonances and the aliphatic carbon resonances correlated with the aliphatic proton resonances. The spectrum on the left was acquired with a 300 µsec contact time and shows all of the 13C resonances correlated to all of the 1H resonances. In both cases the 1H projection is a high resolution 1H NMR spectrum.


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply


Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 06:46 PM.


Map