Gao, Chukun, Patrick T. Judge, Erika L. Sesti, Lauren E. Price, Nicholas Alaniva, Edward P. Saliba, Brice J. Albert, Nathan J. Soper, Pin-Hui Chen, and Alexander B. Barnes. “Four Millimeter Spherical Rotors Spinning at 28 KHz with Double-Saddle Coils for Cross Polarization NMR.” Journal of Magnetic Resonance 303 (June 2019): 1–6.
Spherical rotors in magic angle spinning (MAS) experiments have significant advantages over traditional cylindrical rotors including simplified spinning implementation, easy sample exchange, more efficient microwave coupling for dynamic nuclear polarization (DNP), and feasibility of downscaling to access higher spinning frequencies. Here, we implement spherical rotors with 4 mm outside diameter (o.d.) and demonstrate spinning > 28 kHz using a single aperture for spinning gas. We show a modified stator geometry to improve fiber optic detection, increase NMR filling factor, and improve alignment for sample exchange and microwave irradiation. Higher NMR Rabi frequencies were obtained using smaller radiofrequency (RF) coils on small-diameter spherical rotors, compared to our previous implementation of MAS spheres with an o.d. of 9.5 mm. We report nutation fields of 110 kHz on 13C with 820 W of input power and 100 kHz on 1H with 800 W of input power. Proton decoupling fields of 78 kHz were applied over 20 ms of signal acquisition without any sign of arcing. Compared to our initial demonstration of a split coil for 9.5 mm spheres, this current implementation of a double-saddle coil inductor for 4 mm spheres not only intensifies the RF fields, but also improves RF homogeneity. We achieve an 810°/90° nutation intensity ratio of 0.84 at 300.197 MHz (1H). We also show electromagnetic simulations predicting a nearly 3-fold improvement in electron Rabi frequency of 0.99 MHz (with 4 mm spheres) compared to 0.38 MHz (with 3.2 mm cylinders), with 5 W of incident microwave power. Further improvements in magnetic resonance spin control are expected as RF inductors and microwave coupling are optimized for spherical rotors and scaled down to the micron scale.
De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
De novo prediction of cross-effect efficiency for magic angle spinning dynamic nuclear polarization #DNPNMR
Mentink-Vigier, Frédéric, Anne-Laure Barra, Johan van Tol, Sabine Hediger, Daniel Lee, and Gaël De Paëpe. “De Novo Prediction of Cross-Effect Efficiency for Magic Angle Spinning Dynamic Nuclear Polarization.” Physical Chemistry Chemical Physics 21, no. 4 (2019): 2166–76.
https://doi.org/10.1039/C8CP06819D.
nmrlearner
News from NMR blogs
0
05-06-2019 04:47 PM
Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR
From The DNP-NMR Blog:
Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR
Sesti, Erika L., Edward P. Saliba, Nicholas Alaniva, and Alexander B. Barnes. “Electron Decoupling with Cross Polarization and Dynamic Nuclear Polarization below 6 K.” Journal of Magnetic Resonance 295 (October 2018): 1–5.
https://doi.org/10.1016/j.jmr.2018.07.016.
nmrlearner
News from NMR blogs
0
03-24-2019 10:41 PM
Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs #DNPNMR
From The DNP-NMR Blog:
Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs #DNPNMR
Guarin, D., et al., Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs. The Journal of Physical Chemistry Letters, 2017. 8(22): p. 5531-5536.
https://www.ncbi.nlm.nih.gov/pubmed/29076730
nmrlearner
News from NMR blogs
0
12-29-2017 09:03 PM
Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Daube, D., et al., Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2016. 138(51): p. 16572-16575.
http://dx.doi.org/10.1021/jacs.6b08683
nmrlearner
News from NMR blogs
0
03-07-2017 08:21 AM
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kubicki, D.J., et al., Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci., 2016. 7(1): p. 550-558.
http://dx.doi.org/10.1039/C5SC02921J
nmrlearner
News from NMR blogs
0
01-06-2017 07:43 PM
The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning
From The DNP-NMR Blog:
The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning
Mance, D., et al., The magnetic field dependence of cross-effect dynamic nuclear polarization under magic angle spinning. J. Chem. Phys., 2015. 142(23): p. 234201.
doi:http://dx.doi.org/10.1063/1.4922219
nmrlearner
News from NMR blogs
0
07-06-2015 04:35 PM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Zhengfeng Zhang, Yimin Miao, Xiaoli Liu, Jun Yang, Conggang Li, Feng Deng, Riqiang Fu</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, the 13C RF amplitude is...
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 5 March 2012</br>
Zhengfeng*Zhang, Yimin*Miao, Xiaoli*Liu, Jun*Yang, Conggang*Li, ...</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, theC RF amplitude is modulated...