BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-16-2020, 02:10 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials #DNPNMR

From The DNP-NMR Blog:

Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials #DNPNMR

Harchol, Adi, Guy Reuveni, Vitalii Ri, Brijith Thomas, Raanan Carmieli, Rolfe H. Herber, Chunjoong Kim, and Michal Leskes. “Endogenous Dynamic Nuclear Polarization for Sensitivity Enhancement in Solid-State NMR of Electrode Materials.” The Journal of Physical Chemistry C 124, no. 13 (April 2, 2020): 7082–90.


https://doi.org/10.1021/acs.jpcc.0c00858.


Rational design of materials for energy storage systems relies on our ability to probe these materials at various length scales. Solid state NMR spectroscopy is a powerful approach for gaining chemical and structural insight at the atomic/molecular level, but its low detection sensitivity often limits applicability. This limitation can be overcome by transferring the high polarization of electron spins to the sample of interest in a process called dynamic nuclear polarization (DNP). Here we employ for the first time, metal ion-based DNP to probe pristine and cycled composite battery electrodes. A new and efficient DNP agent, Fe(III), is introduced, yielding lithium signal enhancement up to 180 when substituted in the anode material Li4Ti5O12. In addition to being DNP active, Fe(III) improves the anode performance. Reduction of Fe(III) to Fe(II) upon cycling can be monitored in the loss of DNP activity. We show that the dopant can be reactivated (return to Fe(III)) for DNP by increasing the cycling potential window. Furthermore, we demonstrate that the deleterious effect of carbon additives on the DNP process can be eliminated by using carbon free electrodes, doped with Fe(III) and Mn(II), which provide good electrochemical performance as well as sensitivity in DNP-NMR. We expect the approach presented here will expand the applicability of DNP for studying materials for frontier challenges in materials chemistry associated with energy and sustainability.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles #DNPNMR
From The DNP-NMR Blog: Endogenous dynamic nuclear polarization NMR of hydride-terminated silicon nanoparticles #DNPNMR Ha, Michelle, Alyxandra N. Thiessen, Ivan V. Sergeyev, Jonathan G.C. Veinot, and Vladimir K. Michaelis. “Endogenous Dynamic Nuclear Polarization NMR of Hydride-Terminated Silicon Nanoparticles.” Solid State Nuclear Magnetic Resonance 100 (August 2019): 77–84. https://doi.org/10.1016/j.ssnmr.2019.04.001.
nmrlearner News from NMR blogs 0 05-06-2019 04:47 PM
Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization #DNPNMR Kubicki, D.J. and L. Emsley, Improving Sensitivity of Solid-state NMR Spectroscopy by Rational Design of Polarizing Agents for Dynamic Nuclear Polarization. Chimia (Aarau), 2017. 71(4): p. 190-194. https://www.ncbi.nlm.nih.gov/pubmed/28446334
nmrlearner News from NMR blogs 0 05-21-2018 06:16 PM
Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR #DNPNMR
From The DNP-NMR Blog: Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Lilly Thankamony, A.S., et al., Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR. Prog Nucl Magn Reson Spectrosc, 2017. 102-103(Supplement C): p. 120-195. https://www.ncbi.nlm.nih.gov/pubmed/29157490
nmrlearner News from NMR blogs 0 11-30-2017 01:10 AM
Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR
Dynamic nuclear polarization for sensitivity enhancement in modern solid-state NMR Publication date: Available online 23 July 2017 Source:Progress in Nuclear Magnetic Resonance Spectroscopy</br> Author(s): Aany Sofia Lilly Thankamony, Johannes J. Wittmann, Monu Kaushik, Björn Corzilius</br> The field of dynamic nuclear polarization has undergone tremendous developments and diversification since its inception more than 6 decades ago. In this review we will provide an in-depth overview of the relevant topics involved in DNP-enhanced MAS NMR spectroscopy. This...
nmrlearner Journal club 0 07-24-2017 10:10 AM
Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization 13C NMR
From The DNP-NMR Blog: Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization 13C NMR Riikonen, J., et al., Endogenous Stable Radicals for Characterization of Thermally Carbonized Porous Silicon by Solid-State Dynamic Nuclear Polarization13C NMR. The Journal of Physical Chemistry C, 2015. 119(33): p. 19272-19278. http://dx.doi.org/10.1021/acs.jpcc.5b05970
nmrlearner News from NMR blogs 0 08-26-2015 11:52 PM
Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen
From The DNP-NMR Blog: Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen Le, D., et al., Up to 100% Improvement in Dynamic Nuclear Polarization Solid-State NMR Sensitivity Enhancement of Polymers by Removing Oxygen. Macromol Rapid Commun, 2015: p. n/a-n/a. http://www.ncbi.nlm.nih.gov/pubmed/26010134
nmrlearner News from NMR blogs 0 06-26-2015 09:55 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:12 AM.


Map