Efficiency of Water-Soluble Nitroxide Biradicals for Dynamic Nuclear Polarization in Rotating Solids at 9.4 T: bcTol-M and cyolyl-TOTAPOL as New Polarizing Agents #DNPNMR
Efficiency of Water-Soluble Nitroxide Biradicals for Dynamic Nuclear Polarization in Rotating Solids at 9.4 T: bcTol-M and cyolyl-TOTAPOL as New Polarizing Agents #DNPNMR
Geiger, Michel-Andreas, Anil P. Jagtap, Monu Kaushik, Han Sun, Daniel Stöppler, Snorri T. Sigurdsson, Björn Corzilius, and Hartmut Oschkinat. “Efficiency of Water-Soluble Nitroxide Biradicals for Dynamic Nuclear Polarization in Rotating Solids at 9.4 T: BcTol-M and Cyolyl-TOTAPOL as New Polarizing Agents.” Chemistry - A European Journal 24, no. 51 (September 12, 2018): 13485–94.
Nitroxide biradicals are very efficient polarizing agents in magic angle spinning (MAS) cross effect (CE) dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR). Many recently synthesized, new radicals show superior DNP-efficiency in organic solvents but suffer from insufficient solubility in water or glycerol/water for biological applications. We report DNP efficiencies for two new radicals, the water-soluble bcTol-M and cyolyl-TOTAPOL, and include a comparison with three known biradicals, TOTAPOL, bcTol, and AMUPol. They differ by linker groups, featuring either a 3-aminopropane-1,2-diol or a urea tether, or by the structure of the alkyl substituents that flank the nitroxide groups. For evaluating their performances, we measured both signal enhancements e and DNP-enhanced sensitivity k, and compared the results to electron spin relaxation data recorded at the same magnetic field strength (9.4 T). In our study, differences in DNP efficiency correlate with changes in the nuclear polarization dynamics rather than electron relaxation.
The ratios of their individual e and k differ by up to 20%, which is explained by starkly different nuclear polarization build-up rates. For the radicals compared here empirically, using proline standard solutions, the new radical bcTol-M performs best while being most soluble in water/glycerol mixtures.
Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family #DNPNMR
From The DNP-NMR Blog:
Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family #DNPNMR
Mentink-Vigier, Frédéric, Ildefonso Marin-Montesinos, Anil P. Jagtap, Thomas Halbritter, Johan van Tol, Sabine Hediger, Daniel Lee, Snorri Th. Sigurdsson, and Gaël De Paëpe. “Computationally Assisted Design of Polarizing Agents for Dynamic Nuclear Polarization Enhanced NMR: The AsymPol Family.” Journal of the American Chemical Society 140, no. 35 (September 5, 2018): 11013–19.
https://doi.org/10.1021/jacs.8b04911.
Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR
From The DNP-NMR Blog:
Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Saliba, E.P., et al., Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. J Am Chem Soc, 2017. 139(18): p. 6310-6313.
https://www.ncbi.nlm.nih.gov/pubmed/28429936
nmrlearner
News from NMR blogs
0
08-11-2017 08:52 PM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643.
http://dx.doi.org/10.1039/C6CP90249A
nmrlearner
News from NMR blogs
0
12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204.
http://dx.doi.org/10.1039/C6CP04621E
nmrlearner
News from NMR blogs
0
11-21-2016 11:02 PM
bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules
From The DNP-NMR Blog:
bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules
Jagtap, A.P., et al., bcTol: a highly water-soluble biradical for efficient dynamic nuclear polarization of biomolecules. Chem Commun (Camb), 2016. 52(43): p. 7020-3.
http://www.ncbi.nlm.nih.gov/pubmed/27161650
nmrlearner
News from NMR blogs
0
07-29-2016 03:01 PM
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
From The DNP-NMR Blog:
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
Sauvee, C., et al., Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angew Chem Int Ed Engl, 2013. 52(41): p. 10858-10861.
http://www.ncbi.nlm.nih.gov/pubmed/23956072
nmrlearner
News from NMR blogs
0
01-24-2014 11:26 PM
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
From The DNP-NMR Blog:
Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency
Sauvee, C., et al., Highly Efficient, Water-Soluble Polarizing Agents for Dynamic Nuclear Polarization at High Frequency. Angew Chem Int Ed Engl, 2013. 52(41): p. 10858-10861.
http://www.ncbi.nlm.nih.gov/pubmed/23956072