BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-10-2018, 01:53 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default The effect of Ho3+ doping on 13C dynamic nuclear polarization at 5 T

From The DNP-NMR Blog:

The effect of Ho3+ doping on 13C dynamic nuclear polarization at 5 T

Sirusi, A.A., et al., The effect of Ho3+ doping on 13C dynamic nuclear polarization at 5 T. PCCP, 2018. 20(2): p. 728-731.


http://dx.doi.org/10.1039/C7CP07198A


Dissolution dynamic nuclear polarization was introduced in 2003 as a method for producing hyperpolarized 13C solutions suitable for metabolic imaging. The signal to noise ratio for the imaging experiment depends on the maximum polarization achieved in the solid state. Hence, optimization of the DNP conditions is essential. To acquire maximum polarization many parameters related to sample preparation can be modulated. Recently, it was demonstrated that Ho3+, Dy3+, Tb3+, and Gd3+ complexes enhance the polarization at 1.2 K and 3.35 T when using the trityl radical as the primary paramagnetic center. Here, we have investigated the influence of Ho-DOTA on 13C solid state DNP at 1.2 K and 5 T. We have performed 13C DNP on [1-13C] sodium acetate in 1 : 1 (v/v) water/glycerol with 15 mM trityl OX063 radicals in the presence of a series of Ho-DOTA concentrations (0, 0.5, 1, 2, 3, 5 mM). We have found that adding a small amount of Ho-DOTA in the sample preparation not only enhances the 13C polarization but also decreases the buildup time. The optimum Ho-DOTA concentration was 2 mM. In addition, the microwave sweep spectrum changes character in a manner that suggests both the cross effect and thermal mixing are active mechanisms for trityl radical at 5 T and 1.2 K.


p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}

Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kaushik, M., et al., Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2017. 56(15): p. 4295-4299. https://www.ncbi.nlm.nih.gov/pubmed/28319293
nmrlearner News from NMR blogs 0 07-15-2017 05:05 PM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643. http://dx.doi.org/10.1039/C6CP90249A
nmrlearner News from NMR blogs 0 12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204. http://dx.doi.org/10.1039/C6CP04621E
nmrlearner News from NMR blogs 0 11-21-2016 11:02 PM
Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
From The DNP-NMR Blog: Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR Kiswandhi, A., et al., Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical. Phys. Chem. Chem. Phys., 2016. 18(31): p. 21351-21359. http://dx.doi.org/10.1039/C6CP03954E
nmrlearner News from NMR blogs 0 09-22-2016 10:41 PM
Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization
From The DNP-NMR Blog: Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization Mentink-Vigier, F., et al., Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization. Phys. Chem. Chem. Phys., 2015. http://dx.doi.org/10.1039/C5CP03457D
nmrlearner News from NMR blogs 0 07-30-2015 12:01 AM
Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations
From The DNP-NMR Blog: Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations Gerlovin, I.Y., et al., Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations. AIP Conference Proceedings, 2013. 1566(1): p. 319-320. http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4848414
nmrlearner News from NMR blogs 0 12-06-2014 04:54 AM
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
From The DNP-NMR Blog: Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect Shimon, D., et al., Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect. Phys Chem Chem Phys, 2014. 16(14): p. 6687-99. http://www.ncbi.nlm.nih.gov/pubmed/24585094
nmrlearner News from NMR blogs 0 06-04-2014 03:22 PM
Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms
From The DNP-NMR Blog: Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms Hovav, Y., et al., Theoretical Aspects of Dynamic Nuclear Polarization in the Solid State: The Influence of High Radical Concentrations on the Solid Effect and Cross Effect Mechanisms. Appl. Magn. Reson., 2012. 43(1-2): p. 21-41. http://dx.doi.org/10.1007/s00723-012-0359-0
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:37 AM.


Map