Dissolution dynamic nuclear polarization was introduced in 2003 as a method for producing hyperpolarized 13C solutions suitable for metabolic imaging. The signal to noise ratio for the imaging experiment depends on the maximum polarization achieved in the solid state. Hence, optimization of the DNP conditions is essential. To acquire maximum polarization many parameters related to sample preparation can be modulated. Recently, it was demonstrated that Ho3+, Dy3+, Tb3+, and Gd3+ complexes enhance the polarization at 1.2 K and 3.35 T when using the trityl radical as the primary paramagnetic center. Here, we have investigated the influence of Ho-DOTA on 13C solid state DNP at 1.2 K and 5 T. We have performed 13C DNP on [1-13C] sodium acetate in 1 : 1 (v/v) water/glycerol with 15 mM trityl OX063 radicals in the presence of a series of Ho-DOTA concentrations (0, 0.5, 1, 2, 3, 5 mM). We have found that adding a small amount of Ho-DOTA in the sample preparation not only enhances the 13C polarization but also decreases the buildup time. The optimum Ho-DOTA concentration was 2 mM. In addition, the microwave sweep spectrum changes character in a manner that suggests both the cross effect and thermal mixing are active mechanisms for trityl radical at 5 T and 1.2 K.
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kaushik, M., et al., Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2017. 56(15): p. 4295-4299.
https://www.ncbi.nlm.nih.gov/pubmed/28319293
nmrlearner
News from NMR blogs
0
07-15-2017 05:05 PM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643.
http://dx.doi.org/10.1039/C6CP90249A
nmrlearner
News from NMR blogs
0
12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204.
http://dx.doi.org/10.1039/C6CP04621E
nmrlearner
News from NMR blogs
0
11-21-2016 11:02 PM
Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
From The DNP-NMR Blog:
Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
Kiswandhi, A., et al., Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical. Phys. Chem. Chem. Phys., 2016. 18(31): p. 21351-21359.
http://dx.doi.org/10.1039/C6CP03954E
nmrlearner
News from NMR blogs
0
09-22-2016 10:41 PM
Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization
From The DNP-NMR Blog:
Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization
Mentink-Vigier, F., et al., Nuclear Depolarization and Absolute Sensitivity in Magic-Angle Spinning Cross-Effect Dynamic Nuclear Polarization. Phys. Chem. Chem. Phys., 2015.
http://dx.doi.org/10.1039/C5CP03457D
nmrlearner
News from NMR blogs
0
07-30-2015 12:01 AM
Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations
From The DNP-NMR Blog:
Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations
Gerlovin, I.Y., et al., Dynamic nuclear polarization and Hanle effect in (In,Ga)As/GaAs quantum dots. Role of nuclear spin fluctuations. AIP Conference Proceedings, 2013. 1566(1): p. 319-320.
http://scitation.aip.org/content/aip/proceeding/aipcp/10.1063/1.4848414
nmrlearner
News from NMR blogs
0
12-06-2014 04:54 AM
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
From The DNP-NMR Blog:
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
Shimon, D., et al., Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect. Phys Chem Chem Phys, 2014. 16(14): p. 6687-99.
http://www.ncbi.nlm.nih.gov/pubmed/24585094