We report achieving enhanced nuclear magnetization in a magnetic resonance force microscope experiment at 0.6 tesla and 4.2 kelvin using the dynamic nuclear polarization (DNP) effect. In our experiments a microwire coplanar waveguide delivered radiowaves to excite nuclear spins and microwaves to excite electron spins in a 250 nm thick nitroxide-doped polystyrene sample. Both electron and proton spin resonance were observed as a change in the mechanical resonance frequency of a nearby cantilever having a micron-scale nickel tip. NMR signal, not observable from Curie-law magnetization at 0.6 T, became observable when microwave irradiation was applied to saturate the electron spins. The resulting NMR signal's size, buildup time, dependence on microwave power, and dependence on irradiation frequency was consistent with a transfer of magnetization from electron spins to nuclear spins. Due to the presence of an inhomogeneous magnetic field introduced by the cantilever's magnetic tip, the electron spins in the sample were saturated in a microwave-resonant slice 10's of nm thick. The spatial distribution of the nuclear polarization enhancement factor epsilon was mapped by varying the frequency of the applied radiowaves. The observed enhancement factor was zero for spins in the center of the resonant slice, was epsilon = +10 to +20 for spins proximal to the magnet, and was epsilon = -10 to -20 for spins distal to the magnet. We show that this bipolar nuclear magnetization profile is consistent with cross-effect DNP in a approximately 10(5) T m(-1) magnetic field gradient. Potential challenges associated with generating and using DNP-enhanced nuclear magnetization in a nanometer-resolution magnetic resonance imaging experiment are elucidated and discussed.
Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy
From The DNP-NMR Blog:
Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy
Smith, A.N. and J.R. Long, Dynamic Nuclear Polarization as an Enabling Technology for Solid State Nuclear Magnetic Resonance Spectroscopy. Analytical Chemistry, 2016. 88(1): p. 122-132.
http://dx.doi.org/10.1021/acs.analchem.5b04376
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25K
January 2013
Publication year: 2013
Source:Journal of Magnetic Resonance, Volume 226</br>
</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20–25K and 9.4Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier , but also includes a corrugated waveguide for transmission of microwaves from...
nmrlearner
Journal club
0
12-15-2012 09:51 AM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Available online 20 November 2012
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) , but also includes a...
nmrlearner
Journal club
0
12-01-2012 06:10 PM
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Solid state nuclear magnetic resonance with magic-angle spinning and dynamic nuclear polarization below 25 K
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Kent R. Thurber, Alexey Potapov, Wai-Ming Yau, Robert Tycko</br>
We describe an apparatus for solid state nuclear magnetic resonance (NMR) with dynamic nuclear polarization (DNP) and magic-angle spinning (MAS) at 20-25 K and 9.4 Tesla. The MAS NMR probe uses helium to cool the sample space and nitrogen gas for MAS drive and bearings, as described earlier (Thurber et al., J. Magn. Reson. 2008) ,...