p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Gizatullin, B., et al., Dynamic Nuclear Polarization Fast Field Cycling Method for the Selective Study of Molecular Dynamics in Block Copolymers. ChemPhysChem, 2017. 18(17): p. 2347-2356.
Dynamic nuclear polarization (DNP) is one of the most useful methods to increase sensitivity in NMR spectroscopy. It is based on the transfer of magnetization from an electron to the nuclear spin system. Based on previous work that demonstrated the feasibility of integrating DNP with fast field cycling (FFC) relaxometry and the possibility to distinguish between different mechanisms, such as the Overhauser effect (OE) and the solid effect (SE), the first FFC study of the differential relaxation properties of a copolymer is presented. For this purpose, concentrated solutions of the polystyrene-block-polybutadiene-block-polystyrene (SBS) triblock copolymer and the corresponding homopolymers were investigated. T1 -T2 relaxation data are discussed in terms of molecular mobility and the presence of radicals. The DNP selective data indicate a dominant SE contribution to the enhancement of the NMR signal for both blocks of the triblock copolymer and for the homopolymer solutions. The enhancement factors are different for both polymer types and in the copolymer, which is explained by the individual 1 H T1 relaxation times and different electron-nucleus coupling strength. The T1 relaxation dispersion measurements of the SE enhanced signal were performed, which led to improved signal-to-noise ratios that allowed the site-specific separation of relaxation times and their dependence on the Larmor frequency with a higher accuracy.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Neudert, O., C. Mattea, and S. Stapf, Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization. J. Magn. Reson., 2017. 276: p. 113-121.
http://www.sciencedirect.com/science/article/pii/S1090780717300204
nmrlearner
News from NMR blogs
0
05-23-2017 04:44 AM
Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog:
Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Ravera, E., et al., Biosilica-Entrapped Enzymes Studied by Using Dynamic Nuclear-Polarization-Enhanced High-Field NMR Spectroscopy. ChemPhysChem, 2015. 16(13): p. 2751-2754.
https://www.ncbi.nlm.nih.gov/pubmed/26266832
nmrlearner
News from NMR blogs
0
03-16-2017 04:38 AM
A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR #DNPNMR
From The DNP-NMR Blog:
A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Neudert, O., C. Mattea, and S. Stapf, A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR. J Magn Reson, 2016. 271: p. 7-14.
https://www.ncbi.nlm.nih.gov/pubmed/27526396
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Viennet, T., et al., Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2016. 55(36): p. 10746-50.Viennet, T., et al., Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2016. 55(36): p. 10746-50.
...
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes #DNPNMR
From The DNP-NMR Blog:
Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes #DNPNMR
Smith, A.N., et al., Molecular Rationale for Improved Dynamic Nuclear Polarization of Biomembranes. J Phys Chem B, 2016. 120(32): p. 7880-8.
https://www.ncbi.nlm.nih.gov/pubmed/27434371
nmrlearner
News from NMR blogs
0
09-22-2016 10:41 PM
Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization
From The DNP-NMR Blog:
Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization
Neudert, O., et al., Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization. Microporous and Mesoporous Materials, 2015. 205(0): p. 70-74.
http://www.sciencedirect.com/science/article/pii/S1387181114003941
nmrlearner
News from NMR blogs
0
04-06-2015 02:58 PM
[NMR paper] Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Related Articles Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry.
Phys Chem Chem Phys. 2013 Aug 22;
Authors: Hsieh CJ, Chen YW, Hwang DW
Abstract
Biological membranes are complex structures composed of various lipids and proteins. Different membrane compositions affect viscoelastic and hydrodynamic properties of membranes, which are critical to their functions. Lipid bilayer vesicles...