Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein extracts. However, biological NMR spectroscopy is limited to concentrated samples, typically in the millimolar range, due to its intrinsic low sensitivity compared to other techniques such as fluorescence or electron paramagnetic resonance (EPR) spectroscopy. Dynamic nuclear polarization (DNP) is a method that increases the sensitivity of NMR by several orders of magnitude. It exploits a polarization transfer from unpaired electrons to neighboring nuclei which leads to an absolute increase of the signal-to-noise ratio (S/N). Consequently, biological samples with much lower concentrations can now be studied in hours or days compared to several weeks. This chapter will explain the different types of DNP enhanced NMR experiments, focusing primarily on solid-state magic angle spinning (MAS) DNP, its applications, and possible means of improvement.
[NMR paper] Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Dynamic Nuclear Polarization Enhanced NMR in the Solid-State.
Top Curr Chem. 2013 Jul 7;
Authors: Akbey U, Franks WT, Linden A, Rydmark MO, Lange S, Oschkinat H
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is one of the most commonly used spectroscopic techniques to obtain information on the structure and dynamics of biological and chemical materials. A variety of samples can be studied including solutions, crystalline solids, powders and hydrated protein...
nmrlearner
Journal club
0
07-09-2013 02:47 PM
Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy
From The DNP-NMR Blog:
Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy
Takahashi, H., et al., Towards Structure Determination of Self-Assembled Peptides Using Dynamic Nuclear Polarization Enhanced Solid-State NMR Spectroscopy. Angew. Chem. Int. Ed., 2013: p. n/a-n/a.
http://www.ncbi.nlm.nih.gov/pubmed/23564735
nmrlearner
News from NMR blogs
0
06-13-2013 04:24 AM
Enhanced Solid-State NMR Correlation Spectroscopy of Quadrupolar Nuclei Using Dynamic Nuclear Polarization
Enhanced Solid-State NMR Correlation Spectroscopy of Quadrupolar Nuclei Using Dynamic Nuclear Polarization
Daniel Lee, Hiroki Takahashi, Aany S. L. Thankamony, Jean-Philippe Dacquin, Michel Bardet, Olivier Lafon and Gae?l De Pae?pe
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja307755t/aop/images/medium/ja-2012-07755t_0004.gif
Journal of the American Chemical Society
DOI: 10.1021/ja307755t
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/NcXbDBD9aBc
nmrlearner
Journal club
0
11-03-2012 03:56 PM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy
Ivan V. Sergeyev, Loren A. Day, Amir Goldbourt and Ann E. McDermott
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2043062/aop/images/medium/ja-2011-043062_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2043062
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/EeKgo5vg1K0
nmrlearner
Journal club
0
11-30-2011 10:45 PM
Dynamic Nuclear Polarization-Enhanced Solid-State NMR of a 13C-Labeled Signal Peptide Bound to Lipid-Reconstituted Sec Translocon
Dynamic Nuclear Polarization-Enhanced Solid-State NMR of a 13C-Labeled Signal Peptide Bound to Lipid-Reconstituted Sec Translocon
Lenica Reggie, Jakob J. Lopez, Ian Collinson, Clemens Glaubitz and Mark Lorch
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209378h/aop/images/medium/ja-2011-09378h_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja209378h
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/e6Ae3MMc0OU
nmrlearner
Journal club
0
11-09-2011 06:44 AM
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
Chemical Shifts for the Unusual DNA Structure in Pf1 Bacteriophage from Dynamic-Nuclear-Polarization-Enhanced Solid-State NMR Spectroscopy.
J Am Chem Soc. 2011 Aug 22;
Authors: Sergeyev IV, Day LA, Goldbourt A, McDermott AE
Abstract
Solid state NMR spectra, including dynamic nuclear polarization enhanced 400 MHz spectra acquired at 100K, as well as non-DNP spectra at a variety of field strengths and...
nmrlearner
Journal club
0
08-23-2011 04:03 PM
Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocry
Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.rsc.org-images-entities-char_z_RSClogo.gif Related Articles Dynamic nuclear polarization-enhanced solid-state NMR spectroscopy of GNNQQNY nanocrystals and amyloid fibrils.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5911-9
Authors: Debelouchina GT, Bayro MJ, van der Wel PC, Caporini MA, Barnes AB, Rosay M, Maas WE, Griffin RG
Dynamic nuclear polarization (DNP) utilizes the...
nmrlearner
Journal club
0
08-26-2010 04:41 PM
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Related Articles Dynamic nuclear polarization experiments at 14.1 T for solid-state NMR.
Phys Chem Chem Phys. 2010 Jun 14;12(22):5799-803
Authors: Matsuki Y, Takahashi H, Ueda K, Idehara T, Ogawa I, Toda M, Akutsu H, Fujiwara T
Instrumentation for high-field dynamic nuclear polarization (DNP) at 14.1 T was developed to enhance the nuclear polarization for NMR of solids. The gyrotron generated 394.5 GHz submillimeter (sub-mm) wave with a power of 40 W in the second harmonic...