Judge, Patrick T., Erika L. Sesti, Lauren E. Price, Brice J. Albert, Nicholas Alaniva, Edward P. Saliba, Thomas Halbritter, Snorri Th. Sigurdsson, George B. Kyei, and Alexander B. Barnes. “Dynamic Nuclear Polarization with Electron Decoupling in Intact Human Cells and Cell Lysates.” The Journal of Physical Chemistry B, February 21, 2020.
Dynamic nuclear polarization (DNP) is used to improve the inherently poor sensitivity of nuclear magnetic resonance spectroscopy by transferring spin polarization from electrons to nuclei. However, DNP radicals within the sample can have detrimental effects on nuclear spins close to the polarizing agent. Chirped microwave pulses and electron decoupling (eDEC) attenuate these effects in model systems, but this approach is yet to be applied to intact cells or cellular lysates. Herein, we demonstrate for the first time exceptionally fast 1H T1DNP times of just 200 and 300 ms at 90 and 6 K, respectively, using a newly synthesized methylated trityl radical within intact human cells. We further demonstrate that eDEC can also be applied to intact human cells and human and bacterial cell lysates. We investigate eDEC efficiency at different temperatures, with different solvents, and with two trityl radical derivatives. At 90 K, eDEC yields a 13C signal intensity increase of 8% in intact human cells and 10% in human and bacterial cell lysates. At 6 K, eDEC provides larger intensity increases of 15 and 39% in intact human cells and cell lysates, respectively. Combining the manipulation of electron spins with frequency-chirped pulses and sample temperatures approaching absolute zero is a promising avenue for executing rapid, high-sensitivity magic-angle spinning DNP in complex cellular environments.
Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR
From The DNP-NMR Blog:
Electron decoupling with cross polarization and dynamic nuclear polarization below 6 K #DNPNMR
Sesti, Erika L., Edward P. Saliba, Nicholas Alaniva, and Alexander B. Barnes. “Electron Decoupling with Cross Polarization and Dynamic Nuclear Polarization below 6 K.” Journal of Magnetic Resonance 295 (October 2018): 1–5.
https://doi.org/10.1016/j.jmr.2018.07.016.
nmrlearner
News from NMR blogs
0
03-24-2019 10:41 PM
Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization #DNPNMR
Scott, F.J., et al., Frequency-agile gyrotron for electron decoupling and pulsed dynamic nuclear polarization. J Magn Reson, 2018. 289: p. 45-54.
https://www.ncbi.nlm.nih.gov/pubmed/29471275
nmrlearner
News from NMR blogs
0
04-27-2018 10:26 PM
Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR
From The DNP-NMR Blog:
Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Saliba, E.P., et al., Electron Decoupling with Dynamic Nuclear Polarization in Rotating Solids. J Am Chem Soc, 2017. 139(18): p. 6310-6313.
https://www.ncbi.nlm.nih.gov/pubmed/28429936
nmrlearner
News from NMR blogs
0
08-11-2017 08:52 PM
Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla #DNPNMR
From The DNP-NMR Blog:
Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Leavesley, A., et al., Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla. Phys. Chem. Chem. Phys., 2017. 19(5): p. 3596-3605.
https://www.ncbi.nlm.nih.gov/pubmed/28094364
nmrlearner
News from NMR blogs
0
06-02-2017 08:33 PM
Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Viennet, T., et al., Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2016. 55(36): p. 10746-50.Viennet, T., et al., Selective Protein Hyperpolarization in Cell Lysates Using Targeted Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2016. 55(36): p. 10746-50.
...
nmrlearner
News from NMR blogs
0
11-19-2016 08:35 PM
[NMR paper] Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Solid-state NMR on bacterial cells: selective cell wall signal enhancement and resolution improvement using dynamic nuclear polarization.
J Am Chem Soc. 2013 Apr 3;135(13):5105-10
Authors: Takahashi H, Ayala I, Bardet M, De Paëpe G, Simorre JP, Hediger S
Abstract
...
nmrlearner
Journal club
0
10-14-2014 09:48 PM
[NMR paper] Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Mapping Functional Interaction Sites of Human Prune C-Terminal Domain by NMR Spectroscopy in Human Cell Lysates.
Chemistry. 2013 Aug 12;
Authors: Diana D, Smaldone G, De Antonellis P, Pirone L, Carotenuto M, Alonzi A, Di Gaetano S, Zollo M, Pedone EM, Fattorusso R
Abstract
Get well prune: The C-terminal third domain of h-prune is largely unfolded and involved in relevant protein-protein interactions, particularly with...
nmrlearner
Journal club
0
08-14-2013 05:24 PM
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
From the The DNP-NMR Blog:
Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization
Takahashi, H., et al., Solid-State NMR on Bacterial Cells: Selective Cell Wall Signal Enhancement and Resolution Improvement using Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2013.
http://dx.doi.org/10.1021/ja312501d
Dynamic nuclear polarization (DNP) enhanced solid-state nuclear magnetic resonance (NMR) has recently emerged as a powerful technique for the study of material surfaces. In this study, we demonstrate...