BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-13-2014, 09:18 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Dynamic NMR

Dynamic NMR

When a nucleus moves between two (sometimes more) chemical states we have Dynamic NMR. Common examples are: the equilibrium between conformers; complexes that can have two different structures, etc. The principle is so general, that the kind of chemical bonds that are created and destroyed is not relevant. What matters is the rate of exchange between the two states. If the exchange is slow, you see nothing in 1-D, but you see a cross-peak in the EXSY spectrum (another name for the more familiar NOESY). If the exchange is a little faster, you see two broad signals in 1-D. Warm the sample and the exchange becomes faster and faster: you see a single signal, but quite a broad one. At higher rates the single signal is so sharp that we don't mention Dynamic NMR anymore.

More exactly, the appearance of the spectrum depends both on the rate of exchange and on the difference (in Hz) between the two peaks. If we increase the magnetic field, the effect is similar to cooling.

To calculate the rate, we compare a simulated spectrum with the experiment. At the fastest and slowest extremes, even a drastic change in the rate has little effect on the spectrum. At coalescence, instead, even a small change in the rate has a dramatic effect. This is when the signal is the broadest and when the rate of exchange can be calculated with the highest accuracy.

A few years ago I wrote a tutorial on a complex between a ligand with two nitrogens and a platinum ion. The ion could move between the two nitrogens. There were also six hydrogens in the molecule: A exchanging with A', B with B' and C with C'. The very nice thing was that the three frequency differences (A-A', B-B', C-C') had different values. We could therefore see three temperatures of coalescence and measuring the exchange rate was easy. The similarity between the simulation (black) and the experiment (red) was really OK:

In the first days of DNMR, acronym for dynamic NMR, only the singlets were studied. Not only the signals were stronger, but also simpler. Partly because of this simplicity, results were not consistent. In the late 60s Binsch showed that coupled systems, just because they were very complicated, were also richer in information and a more accurate probe. Binsch also wrote the theory to simulate the coupled systems and the first computer program for the task, called "DNMR".

A great expert, today, is prof. Alex Bain. His suite of programs (open source) is called MEXICO. If you want a cheap alternative, I have written iNMR. You can try the Windows version for free for two months.

Source: NMR Software blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic Nuclear Hyperpolarization in Liquids
From The DNP-NMR Blog: Dynamic Nuclear Hyperpolarization in Liquids Günther, U., Dynamic Nuclear Hyperpolarization in Liquids, in Modern NMR Methodology, H. Heise and S. Matthews, Editors. 2013, Springer Berlin Heidelberg. p. 23-69. http://dx.doi.org/10.1007/128_2011_229
nmrlearner News from NMR blogs 0 07-18-2013 12:39 AM
[NMR paper] NMR disentangles a dynamic disaggregase machinery.
NMR disentangles a dynamic disaggregase machinery. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.nature.com-images-lo_npg.gif Related Articles NMR disentangles a dynamic disaggregase machinery. Nat Struct Mol Biol. 2013 Apr;20(4):409-10 Authors: Saio T, Kalodimos CG PMID: 23552291
nmrlearner Journal club 0 06-12-2013 11:42 AM
[NMR tweet] #Dynamic #Nuclear #Magnetic http://t.co/1GtWD00E8z Dynamic Nuclear Magnetic Resonance Spectroscopy
#Dynamic #Nuclear #Magnetic http://t.co/1GtWD00E8z Dynamic Nuclear Magnetic Resonance Spectroscopy Published by openbdb (openbdb) on 2013-04-26T22:51:07Z Source: Twitter
nmrlearner Twitter NMR 0 04-27-2013 01:19 AM
[NMR paper] Dynamic properties of proteins from NMR spectroscopy.
Dynamic properties of proteins from NMR spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Dynamic properties of proteins from NMR spectroscopy. Curr Opin Biotechnol. 1993 Aug;4(4):385-91 Authors: Palmer AG Two-dimensional proton-detected heteronuclear nuclear magnetic resonance spectroscopy has been used to measure 13C and 15N spin-relaxation rate constants for several proteins. Generalized order parameters and effective internal correlation times have been...
nmrlearner Journal club 0 08-22-2010 03:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:22 AM.


Map