p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Roy, S.S., et al., Direct enhancement of nitrogen-15 targets at high-field by fast ADAPT-SABRE. J. Magn. Reson., 2017. 285: p. 55-60.
Signal Amplification by Reversible Exchange (SABRE) is an attractive nuclear spin hyperpolarization technique capable of huge sensitivity enhancement in nuclear magnetic resonance (NMR) detection. The resonance condition of SABRE hyperpolarization depends on coherent spin mixing, which can be achieved naturally at a low magnetic field. The optimum transfer field to spin-1/2 heteronuclei is technically demanding, as it requires field strengths weaker than the earth’s magnetic field for efficient spin mixing. In this paper, we illustrate an approach to achieve strong 15N SABRE hyperpolarization at high magnetic field by a radio frequency (RF) driven coherent transfer mechanism based on alternate pulsing and delay to achieve polarization transfer. The presented scheme is found to be highly robust and much faster than existing related methods, producing ~3 orders of magnitude 15N signal enhancement within 2 s of RF pulsing.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} span.s1 {font: 12.0px 'Apple Symbols'}
[NMR paper] Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy.
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy.
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy.
Methods. 2018 Jan 13;:
Authors: Gibbs EB, Kriwacki RW
Abstract
Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique for characterizing the structural and dynamic properties of intrinsically disordered proteins and protein regions (IDPs &...
nmrlearner
Journal club
0
01-18-2018 12:41 PM
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy
Direct Detection of Carbon and Nitrogen Nuclei for High-Resolution Analysis of Intrinsically Disordered Proteins using NMR Spectroscopy
Publication date: Available online 16 January 2018
Source:Methods</br>
Author(s): E.B. Gibbs, R.W. Kriwacki</br>
Nuclear magnetic resonance spectroscopy (NMR) is a powerful technique for characterizing the structural and dynamic properties of intrinsically disordered proteins and protein regions (IDPs & IDRs). However, the application of NMR to IDPs has been limited by poor chemical shift dispersion in two-dimensional (2D) 1H-15N...
nmrlearner
Journal club
0
01-17-2018 07:00 PM
[NMR paper] Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Related Articles Erratum to: Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
J Biomol NMR. 2017 Dec 11;:
Authors: Takeuchi K, Arthanari H, Shimada I, Wagner G
Abstract
The authors regret a mistake appeared in the supplement of this paper.
High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes
From The DNP-NMR Blog:
High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Hermkens, N.K.J., et al., High field hyperpolarization-EXSY experiment for fast determination of dissociation rates in SABRE complexes. J. Magn. Reson., 2017. 276: p. 122-127.
https://doi.org/10.1016/j.jmr.2017.01.011
nmrlearner
News from NMR blogs
0
05-24-2017 07:40 PM
[NMR paper] Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
Related Articles Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR.
J Biomol NMR. 2015 Oct 23;
Authors: Takeuchi K, Arthanari H, Shimada I, Wagner G
Abstract
Detection of (15)N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (?) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY...
nmrlearner
Journal club
0
10-27-2015 12:33 PM
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR
Nitrogen detected TROSY at high field yields high resolution and sensitivity for protein NMR
Abstract
Detection of 15N in multidimensional NMR experiments of proteins has sparsely been utilized because of the low gyromagnetic ratio (γ) of nitrogen and the presumed low sensitivity of such experiments. Here we show that selecting the TROSY components of proton-attached 15N nuclei (TROSY 15NH) yields high quality spectra in high field magnets (>600Â*MHz) by taking advantage of the slow 15N transverse relaxation and compensating for the inherently low...
nmrlearner
Journal club
0
10-24-2015 05:49 AM
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T)
The Feasibilityof Formation and Kinetics of NMR SignalAmplification by Reversible Exchange (SABRE) at High Magnetic Field(9.4 T)
Danila A. Barskiy, Kirill V. Kovtunov, Igor V. Koptyug, Ping He, Kirsten A. Groome, Quinn A. Best, Fan Shi, Boyd M. Goodson, Roman V. Shchepin, Aaron M. Coffey, Kevin W. Waddell and Eduard Y. Chekmenev
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja501052p/aop/images/medium/ja-2014-01052p_0005.gif
Journal of the American Chemical Society
DOI: 10.1021/ja501052p...