BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-25-2014, 12:44 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Deternining 90° and 180° Soft Pulses

Deternining 90° and 180° Soft Pulses

Many modern NMR pulse sequences (e.g. the 1D gradient selective NOESY experiment) depend on shaped pulses for selective excitation or inversion of specific resonances. Since the width of the excitation profile of a shaped pulse is determined by its duration, the pulse duration is chosen by the user for the selectivity needed. The longer the pulse, the higher the degree of selectivity. Some spectrometer software will calculate the pulse duration based on a selected region in a spectrum containing the desired resonance for excitation. The calculation depends on an initial pulse calibration. The standard calibration method for hard pulses involves incrementing the pulse duration at a fixed power level. The 90° pulse is at the first maximum and the 180° pulse is at the first null. Since the duration of a the selective pulse is fixed by the desired selectivity, the 90° and 180° pulses must be found by varying the pulse power rather than the pulse duration. The figure below shows the calibration for three different 50 msec shaped pulses on a Bruker AVANCE spectrometer.


An on-resonance water signal was observed as a function of pulse power using a selective one-pulse sequence. The scale is in units of decibels of attenuation. Maximum power is at -6 dB so the scale goes from low power on the left to higher power on the right. The 90° and 180° pulses are indicated with arrows. The intensity profiles are not sinusoidal due to the logarithmic dB scale. The 90° and 180° pulses are separated by 6 dB of attenuation as expected.


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[U. of Ottawa NMR Facility Blog] Measurement of 13C 90° Pulses in Solids via Cross Polarization
Measurement of 13C 90° Pulses in Solids via Cross Polarization The direct measurement of 13C 90° pulses in solids under MAS conditions by the conventional method suffers from the very low inherent sensitivity of 13C and is very time consuming due to the typically long 13C T1's. These problems can be at least partially overcome by using 1H - 13C cross polarization which has a potential four-fold sensitivity gain and also a time advantage as the repetition rate depends on the 1H T1 rather than the 13C T1, the former typically being less than the latter by a factor of ten. The 90° pulses...
nmrlearner News from NMR blogs 0 02-21-2014 08:51 PM
[NMR paper] The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing NMR spectroscopy.
From Mendeley Biomolecular NMR group: The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing NMR spectroscopy. Journal of magnetic resonance (San Diego, Calif. : 1997) (2013). Pages: 16-31. Manoj Nimbalkar, Burkhard Luy, Thomas E Skinner, Jorge L Neves, Naum I Gershenzon, Kyryl Kobzar, Wolfgang Bermel, Steffen J Glaser et al. We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply...
nmrlearner Journal club 0 10-17-2013 12:49 PM
[NMR paper] The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing NMR spectroscopy.
From Mendeley Biomolecular NMR group: The Fantastic Four: A plug 'n' play set of optimal control pulses for enhancing NMR spectroscopy. Journal of magnetic resonance (San Diego, Calif. : 1997) (2013). Pages: 16-31. Manoj Nimbalkar, Burkhard Luy, Thomas E Skinner, Jorge L Neves, Naum I Gershenzon, Kyryl Kobzar, Wolfgang Bermel, Steffen J Glaser et al. We present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply...
nmrlearner Journal club 0 04-11-2013 03:08 PM
[Question from NMRWiki Q&A forum] Chemical shift evolution compensation for delays flanked by hard or soft pulses
Chemical shift evolution compensation for delays flanked by hard or soft pulses Hello all,In a typical 2D experiment, the delay "d0" (t1 increment delay in Bruker) is compensated for the chemical shift evolution that would happen during the rf pulse (hard/soft) that are applied flanking (before and after) the "d0" delay. I could also find similar such compensations for shaped pulses before a delay in the pulse programs. These compensation factors varies for different types of pulses, e.g. 2/pi for 90 hard pulse , 0.52 for pc490120. Can someone guide me how these compensation factors...
nmrlearner News from other NMR forums 0 08-02-2012 10:48 PM
[U. of Ottawa NMR Facility Blog] Probe Tuning and 90 Degree Pulses
Probe Tuning and 90 Degree Pulses In order to get meaningful results from multiple-pulse NMR pulse sequences, it is essential that the 90° and 180° pulses are calibrated at the power levels used in the sequences (see this post for example). The calibrations are usually done on a standard sample in a well tuned and matched probe. The calibrations are typically stored in a file which is called up when setting up particular NMR experiments. It is important to know that these calibrations are correct for the particular sample of interest only when the probe is well tuned and matched. For...
nmrlearner News from NMR blogs 0 09-16-2011 10:02 PM
[U. of Ottawa NMR Facility Blog] Shaped Pulses
Shaped Pulses Shaped rf pulses are used frequently in modern NMR experiments for selective excitation and more efficient inversion. The figure below shows some of the pulse shapes in the Bruker shape library measured with an oscilloscope on an AVANCE III console. Each 50.3 MHz rf pulse was 1 msec in duration and was measured at the output of the signal generation unit.http://2.bp.blogspot.com/--GjbnC0soco/TeU9TDXS7nI/AAAAAAAAA4c/Kt3DwPKLjx8/s400/shaped_pulses_scope.jpghttps://blogger.googleusercontent.com/tracker/3300702123878659843-4230712340261495616?l=u-of-o-nmr-facility.blogspot.com...
nmrlearner News from NMR blogs 0 05-31-2011 11:41 PM
[U. of Ottawa NMR Facility Blog] FT NMR Spectra Without Pulses
FT NMR Spectra Without Pulses An FT NMR spectrum is obtained by applying a pulse at the Larmor frequency to a sample in a magnetic field. The precession of the spins induces a voltage in the receiver coil which is recorded as a function of time. The Fourier transform of the time dependent signal is the NMR spectrum. What happens if you do not provide any pulses? You might think that you would not observe a signal - but this is not the case. Even without any pulses there is sufficient noise present to allow incoherent precession of the nuclear spins. This precession can be measured and...
nmrlearner News from NMR blogs 0 04-19-2011 02:44 AM
[U. of Ottawa NMR Facility Blog] Excitation Profiles for Shaped Pulses
Excitation Profiles for Shaped Pulses Shaped pulses are very commonly used for selective excitation and nonselective inversion in a large number of NMR pulse sequences. The frequency domain excitation profile of a radio frequency pulse is the Fourier transform of the time dependent pulse shape and determines the width, uniformity and phase of the frequency spectrum excited. Since time and frequency are reciprocals of one another, short rf pulses have very wide excitation profiles and long rf pulses have very narrow selective excitation profiles. In a previous BLOG post the excitation...
nmrlearner News from NMR blogs 0 01-21-2011 03:31 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 09:18 AM.


Map