BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-31-2015, 07:17 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Cross Polarization Based Mixture Resolution in Solids

Cross Polarization Based Mixture Resolution in Solids

One of the most common techniques used to collect solid-state NMR data for spin I = ½ nuclides is a combination of cross polarization (CP) and magic angle spinning (MAS). CPMAS provides high sensitivity from the CP and high chemical shift resolution from the MAS. Furthermore, the scan repetition rate depends on the shorter relaxation time of the protons rather than the longer relaxation time of the spin I = ½ nuclide therefore, more scans can be collected per unit time. It must be remembered however, that the success of the CP technique depends on the dipolar coupling interaction between proximate protons and the nucleus being observed. In the absence of dipolar coupled protons, CP signals are not observed. For this reason, it is sometimes necessary to use a conventional one-pulse method (Bloch decay) which can be used to observe the spin I = ½ nuclide, albeit with lower sensitivity, whether protons are present or not. When a sample consists of a mixture with some protonated components and some components without protons, then it may be advantageous to collect both a CPMAS and a Block decay spectrum. When both methods are used, the data can be used to resolve the spectrum of the mixture into subspectra; the protonated components in one spectrum and those components without protons in another. An example of this is shown with the 13C NMR data for a common antacid tablet in the figure below.

The two most abundant carbon containing components of an antacid tablet are calcium carbonate and sucrose. Spectrum (a) is the CPMAS spectrum. It consists only of the resonances of sucrose (color coded in yellow) since calcium carbonate (color coded in pink) contains no protons. Spectrum (b) is the Bloch decay spectrum with high power proton decoupling. It consists of both the resonances of sucrose and calcium carbonate. Spectrum (c) is a linear combination of (a) and (b) and represents, primarily, the spectrum of calcium carbonate. Another interesting example of CP based mixture analysis is given here using fruitcake as an example.


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[U. of Ottawa NMR Facility Blog] Mixture Resolution in 13C CPMAS NMR
Mixture Resolution in 13C CPMAS NMR The recycle delay necessary to get the highest signal-to-noise ratio in a multi-scan 13C CPMAS NMR spectrum depends on the relaxation properties of the protons in the sample. The protons in pure solid samples normally belong to a single homogeneous dipolar coupled network. As a result, all of the protons in the coupled network have a common T1 relaxation time. One would expect the same behavior for a mixture of compounds only if the components were mixed at the molecular level. If the compounds are not mixed at the molecular level, the sample...
nmrlearner News from NMR blogs 0 03-27-2015 07:43 AM
Effects of the electron polarization on dynamic nuclear polarization in solids
From The DNP-NMR Blog: Effects of the electron polarization on dynamic nuclear polarization in solids Hovav, Y., et al., Effects of the electron polarization on dynamic nuclear polarization in solids. Phys Chem Chem Phys, 2015. 17(8): p. 6053-65. http://www.ncbi.nlm.nih.gov/pubmed/25640165
nmrlearner News from NMR blogs 0 03-23-2015 08:22 PM
[NMR paper] A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions.
A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions. J Magn Reson. 2014 Nov 15;250C:37-44 Authors: Zhang R, Damron J, Vosegaard T, Ramamoorthy A Abstract Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies...
nmrlearner Journal club 0 12-09-2014 01:13 PM
Hyperpolarization of deuterated metabolites via remote cross-polarization and dissolution dynamic nuclear polarization
From The DNP-NMR Blog: Hyperpolarization of deuterated metabolites via remote cross-polarization and dissolution dynamic nuclear polarization Vuichoud, B., et al., Hyperpolarization of deuterated metabolites via remote cross-polarization and dissolution dynamic nuclear polarization. J Phys Chem B, 2014. 118(5): p. 1411-5. http://www.ncbi.nlm.nih.gov/pubmed/24397585
nmrlearner News from NMR blogs 0 04-02-2014 11:54 PM
[U. of Ottawa NMR Facility Blog] Measurement of 13C 90° Pulses in Solids via Cross Polarization
Measurement of 13C 90° Pulses in Solids via Cross Polarization The direct measurement of 13C 90° pulses in solids under MAS conditions by the conventional method suffers from the very low inherent sensitivity of 13C and is very time consuming due to the typically long 13C T1's. These problems can be at least partially overcome by using 1H - 13C cross polarization which has a potential four-fold sensitivity gain and also a time advantage as the repetition rate depends on the 1H T1 rather than the 13C T1, the former typically being less than the latter by a factor of ten. The 90° pulses...
nmrlearner News from NMR blogs 0 02-21-2014 08:51 PM
Cross Polarization for Dissolution Dynamic Nuclear Polarization Experiments at Readily Accessible Temperatures 1.2*
From The DNP-NMR Blog: Cross Polarization for Dissolution Dynamic Nuclear Polarization Experiments at Readily Accessible Temperatures 1.2*
nmrlearner News from NMR blogs 0 11-21-2013 01:14 AM
High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture
From the The DNP-NMR Blog: High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture Michaelis, V.K., et al., High-Field (13)C Dynamic Nuclear Polarization with a Radical Mixture. J Am Chem Soc, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23373472
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Ergodicity and efficiency of cross-polarization in NMR of static solids.
Ergodicity and efficiency of cross-polarization in NMR of static solids. Ergodicity and efficiency of cross-polarization in NMR of static solids. J Magn Reson. 2011 Apr;209(2):161-6 Authors: Nevzorov AA Cross-polarization transfer is employed in virtually every solid-state NMR experiment to enhance magnetization of low-gamma spins. Theory and experiment is used to assess the magnitude of the final quasistationary magnetization amplitude. The many-body density matrix equation is solved for relatively large (up to N=14) spin systems without the...
nmrlearner Journal club 0 07-23-2011 08:54 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 10:03 PM.


Map