(Note: This entry has been written by Dr. Mike Bernstein - Thank you, Mike!)
It’s a “given” that for NMR the chemical shift must be reported relative to standard. The most widely used is the 1H signal of tetramethylsilane (TMS) in chloroform, which has an assigned value of exactly zero. This is convention, and we all adhere to it. Correctly referencing 1H NMR spectra is seldom a difficulty, whether we use co-dissolved TMS (or a water-soluble equivalent), or the residual proton signal from the deuterated solvent. Things can get more complex, but this works for the vast majority of us. The chemical shift, d, is defined thus:
Venturing to the “dark side” of NMR – nuclei other than 1H – seldom stretches beyond 13C for most, and a residual solvent signal is very often present that can be used as a secondary chemical shift reference. But beautiful possibilities tempt many of us. Whether you are interested in biomolecular NMR and live and breathe 15N and possibly 31P, or 2H, or an orgametallic chemist with an interest in far more exotic nuclei, each heteronucleus has its charms and challenges. One thing unites NMR of all nuclei: adherence to a convention for chemical shifts. This can be easier said than done, given that some reference materials are difficult to handle, expensive, etc. The chemical shift reference compound for 19F NMR is the banned substance, Freon-11.
Absolute chemical shifts
We get help from a group working under the IUPAC [1] guise for their work in helping us calculate the chemical shift scale for all NMR-active nuclei [2]. That is, they provide us with a standard way to get the chemical shift precisely correct for any and all heteronuclear NMR spectra. That’s amazing - and hugely useful!
So how does it work? Well, it’s quite simple, really. At the heart of the calculation is the absolute frequency of the 1H signal of TMS for your NMR spectrometer hardware (console, probe, etc.) and sample (solvent, temperature, etc.). You need to be able to determine the exact frequency of this reference signal to seven decimal figures, at least. The following equation applies (sometimes expressed as a percentage) and uses a ratio to describe a constant, X (Greek capital Xi):
Making it easy with Mnova
We make heavy use of absolute referencing (AR) in Mnova, with the following available:
Correctly reference an X-nucleus spectrum when the referenced 1H spectrum is available
Apply AR to heteronuclear axes in 2D experiments
Allow users to customise the X values
Indirect 1H spectrum referencing using nTMS for a specific hardware and solvent (locked)
Referencing heteronuclear spectra
Ensure that you have a document having (a) a correctly referenced 1H NMR spectrum, and (b) one or more –nucleus spectra.
Select Analysis è Reference è Absolute reference… and choose the X-axis spectrum/spectra to reference.
The table of X values
Note that by tapping on the “X values…” button you will be presented with the table of X-nuclei. In the case of 15N, for example, you can choose which reference standard you want to use. By clicking on the blue “+” button you can enter your own, customised value.
Referencing 2D spectra
When there are 2D spectra in the document then the Absolute reference… selection will reflect this, and allow you to choose which spectrum is used for referencing purposes, and the traces to which this should be applied. Note that you can adjust the referencing of 1H and X-nuclei.
Referencing a 1H spectrum
You can use saved nTMS values to reference another 1H spectrum from the same NMR spectrometer. Start with a correctly-referenced 1H NMR spectrum, and select Analysis è Reference è Edit saved references… From this dialogue you can add the value for the particular hardware and measurement conditions – solvent, temperature, etc.
Now, when you select Analysis è Reference è Apply saved reference then the saved value will be used if the criteria are met.
Conclusions
Absolute referencing is a powerful way to ensure that data are correctly referenced. This is equally important in open-access environments as it is under automation, where it helps processes such as Verify be more robust.
References
[1] (a) Harris RK, Becker ED, Cabral de Menzes SM, Goodfellow R, Granger P. Pure Appl. Chem. 2001; 73: 1795
(b) Harris RK, Becker ED. J. Magn. Reson. 2003; 156: 323.
[NMR paper] Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
Practical use of chemical shift databases for protein solid-state NMR: 2D chemical shift maps and amino-acid assignment with secondary-structure information.
J Biomol NMR. 2013 Apr 28;
Authors: Fritzsching KJ, Yang Y, Schmidt-Rohr K, Hong M
Abstract
We introduce a Python-based program that utilizes the large database of (13)C and (15)N chemical shifts in the Biological Magnetic...
nmrlearner
Journal club
0
04-30-2013 10:21 PM
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
http://i.ytimg.com/vi/7R7iM636WhY/default.jpg
Lecture 9. Chemical Shift. 1H NMR Chemical Shifts.
This video is part of a 28-lecture graduate-level course titled "Organic Spectroscopy" taught at UC Irvine by Professor James S. Nowick. The course covers in...
From:UCITLTC
Views:7351
http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif http://gdata.youtube.com/static/images/icn_star_full_11x11.gif...
nmrlearner
NMR educational videos
0
03-22-2013 05:19 AM
[NMR paper] NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction.
NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction.
Related Articles NightShift: NMR Shift Inference by General Hybrid Model Training - a Framework for NMR Chemical Shift Prediction.
BMC Bioinformatics. 2013 Mar 16;14(1):98
Authors: Dehof AK, Loew S, Lenhof HP, Hildebrandt A
Abstract
NMR chemical shift prediction plays an important role in various applications in computational biology. Among others, structure determination, structure optimization, and the scoring of docking...
nmrlearner
Journal club
0
03-19-2013 01:22 PM
SHIFTX2: Chemical Shift Prediction
SHIFTX2 website
SHIFTX2 is capable of rapidly and accurately calculating diamagnetic 1H, 13C and 15N chemical shifts from protein coordinate data. Compared to its predecessor (SHIFTX) and to other existing protein chemical shift prediction programs, SHIFTX2 is substantially more accurate (up to 26% better by correlation coefficient with an RMS error that is up to 3.3× smaller) than the next best performing program. It also provides significantly more coverage (up to 10% more), is significantly faster (up to 8.5×) and capable of calculating a wider variety of backbone and side chain...
gwnmr
NMR software
0
01-10-2012 06:13 PM
[NMR Geek blog] Chemical Shift Referencing Calculator
Chemical Shift Referencing Calculator
Below is the protocol I follow for chemical shift referencing (direct for 1H, and indirect for 13C and 15N). Actually I always have to look back and forth for referencing, so thought why not make a small script and put it on web so that the access becomes handy. !!! The referencing should be done
Full story can be found on the NMR geek blog
Chemical shift of protons?
Can someone give me the answers to the chemical shift of the protons in this compound: CH3CH2OCH2CH(CH3)COOH? Of if you can explain how to get the chemical shift it would be quite helpful as the info online does not really help me.
Tim Mrudande
NMR Questions and Answers
1
01-16-2005 08:23 AM
what is/ how do you calculate the chemical shift in an NMR?
I have read the technical definitions but I still do not understand what the chemical shift means and how you calculate it given an NMR peak. If someone could kind of dumb it down for me but still give me the important things to know/ how it helps you determine the structure of a molecule with the NMR I would appreciate it.