BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-29-2017, 09:03 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,809
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs #DNPNMR

From The DNP-NMR Blog:

Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs #DNPNMR

Guarin, D., et al., Characterizing Thermal Mixing Dynamic Nuclear Polarization via Cross-Talk between Spin Reservoirs. The Journal of Physical Chemistry Letters, 2017. 8(22): p. 5531-5536.


https://www.ncbi.nlm.nih.gov/pubmed/29076730


Dynamic nuclear polarization (DNP) embraces a family of methods to increase signal intensities in nuclear magnetic resonance (NMR) spectroscopy. Despite extensive theoretical work that allows one to distinguish at least five distinct mechanisms, it remains challenging to determine the relative weights of the processes that are responsible for DNP in state-of-the-art experiments operating with stable organic radicals like nitroxides at high magnetic fields and low temperatures. Specifically, determining experimental conditions where DNP involves thermal mixing, which denotes a spontaneous heat exchange between different spin reservoirs, remains challenging. We propose an experimental approach to ascertain the prevalence of the thermal mixing regime by monitoring characteristic signature properties of the time evolution of the hyperpolarization. We find that thermal mixing is the dominant DNP mechanism at high nitroxide radical concentrations, while a mixture of different mechanisms prevails at lower concentrations.
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
Dynamic nuclear polarisation by thermal mixing: quantum theory and macroscopic simulations #DNPNMR
From The DNP-NMR Blog: Dynamic nuclear polarisation by thermal mixing: quantum theory and macroscopic simulations #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Karabanov, A., et al., Dynamic nuclear polarisation by thermal mixing: quantum theory and macroscopic simulations. Phys. Chem. Chem. Phys., 2016. 18(43): p. 30093-30104. https://www.ncbi.nlm.nih.gov/pubmed/27775111
nmrlearner News from NMR blogs 0 08-21-2017 02:23 PM
Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR
From The DNP-NMR Blog: Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Perras, F.A., et al., Characterizing Substrate-Surface Interactions on Alumina-Supported Metal Catalysts by Dynamic Nuclear Polarization-Enhanced Double-Resonance NMR Spectroscopy. J Am Chem Soc, 2017. 139(7): p. 2702-2709. https://www.ncbi.nlm.nih.gov/pubmed/28112506
nmrlearner News from NMR blogs 0 06-13-2017 06:55 AM
Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog: Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Daube, D., et al., Heteronuclear Cross-Relaxation under Solid-State Dynamic Nuclear Polarization. J. Am. Chem. Soc., 2016. 138(51): p. 16572-16575. http://dx.doi.org/10.1021/jacs.6b08683
nmrlearner News from NMR blogs 0 03-07-2017 08:21 AM
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog: Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kubicki, D.J., et al., Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci., 2016. 7(1): p. 550-558. http://dx.doi.org/10.1039/C5SC02921J
nmrlearner News from NMR blogs 0 01-06-2017 07:43 PM
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog: Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Kubicki, D.J., et al., Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci., 2016. 7(1): p. 550-558. http://dx.doi.org/10.1039/C5SC02921J
nmrlearner News from NMR blogs 0 12-19-2016 03:37 AM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643. http://dx.doi.org/10.1039/C6CP90249A
nmrlearner News from NMR blogs 0 12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica} Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204. http://dx.doi.org/10.1039/C6CP04621E
nmrlearner News from NMR blogs 0 11-21-2016 11:02 PM
The role of the glassy dynamics and thermal mixing in the dynamic nuclear polarization and relaxation mechanisms of pyruvic acid
From The DNP-NMR Blog: The role of the glassy dynamics and thermal mixing in the dynamic nuclear polarization and relaxation mechanisms of pyruvic acid Filibian, M., et al., The role of the glassy dynamics and thermal mixing in the dynamic nuclear polarization and relaxation mechanisms of pyruvic acid. Phys Chem Chem Phys, 2014. 16(48): p. 27025-36. http://www.ncbi.nlm.nih.gov/pubmed/25382595
nmrlearner News from NMR blogs 0 03-27-2015 11:59 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 05:37 PM.


Map