p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kaushik, M., et al., Bis-Gadolinium Complexes for Solid Effect and Cross Effect Dynamic Nuclear Polarization. Angew Chem Int Ed Engl, 2017. 56(15): p. 4295-4299.
High-spin complexes act as polarizing agents (PAs) for dynamic nuclear polarization (DNP) in solid-state NMR spectroscopy and feature promising aspects towards biomolecular DNP. We present a study on bis(Gd-chelate)s which enable cross effect (CE) DNP owing to spatial confinement of two dipolar-coupled electron spins. Their well-defined GdGd distances in the range of 1.2-3.4 nm allowed us to elucidate the GdGd distance dependence of the DNP mechanism and NMR signal enhancement. We found that GdGd distances above 2.1 nm result in solid effect DNP while distances between 1.2 and 2.1 nm enable CE for 1 H, 13 C, and 15 N nuclear spins. We compare 263 GHz electron paramagnetic resonance (EPR) spectra with the obtained DNP field profiles and discuss possible CE matching conditions within the high-spin system and the influence of dipolar broadening of the EPR signal. Our findings foster the understanding of the CE mechanism and the design of high-spin PAs for specific applications of DNP.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Neudert, O., C. Mattea, and S. Stapf, Molecular dynamics-based selectivity for Fast-Field-Cycling relaxometry by Overhauser and solid effect dynamic nuclear polarization. J. Magn. Reson., 2017. 276: p. 113-121.
http://www.sciencedirect.com/science/article/pii/S1090780717300204
nmrlearner
News from NMR blogs
0
05-23-2017 04:44 AM
Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures #DNPNMR
From The DNP-NMR Blog:
Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Geiger, M.A., et al., Temperature dependence of cross-effect dynamic nuclear polarization in rotating solids: advantages of elevated temperatures. Phys. Chem. Chem. Phys., 2016. 18(44): p. 30696-30704.
https://www.ncbi.nlm.nih.gov/pubmed/27791210
nmrlearner
News from NMR blogs
0
01-25-2017 11:13 PM
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kubicki, D.J., et al., Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci., 2016. 7(1): p. 550-558.
http://dx.doi.org/10.1039/C5SC02921J
nmrlearner
News from NMR blogs
0
01-06-2017 07:43 PM
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kubicki, D.J., et al., Rational design of dinitroxide biradicals for efficient cross-effect dynamic nuclear polarization. Chem. Sci., 2016. 7(1): p. 550-558.
http://dx.doi.org/10.1039/C5SC02921J
nmrlearner
News from NMR blogs
0
12-19-2016 03:37 AM
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Correction: Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(42): p. 29643-29643.
http://dx.doi.org/10.1039/C6CP90249A
nmrlearner
News from NMR blogs
0
12-17-2016 07:18 AM
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
From The DNP-NMR Blog:
Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Corzilius, B., Theory of solid effect and cross effect dynamic nuclear polarization with half-integer high-spin metal polarizing agents in rotating solids. Phys. Chem. Chem. Phys., 2016. 18(39): p. 27190-27204.
http://dx.doi.org/10.1039/C6CP04621E
nmrlearner
News from NMR blogs
0
11-21-2016 11:02 PM
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
From The DNP-NMR Blog:
Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect
Shimon, D., et al., Static (1)H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect. Phys Chem Chem Phys, 2014. 16(14): p. 6687-99.
http://www.ncbi.nlm.nih.gov/pubmed/24585094