BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-11-2015, 02:50 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,805
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling

From The DNP-NMR Blog:

Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling


van der Cruijsen, E.A.W., et al., Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling. Chemistry – A European Journal, 2015: p. n/a-n/a.


http://dx.doi.org/10.1002/chem.201501376


Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material sciences. In such applications, however, site-specificity and spectroscopic resolution become critical factors that are usually difficult to control by current DNP-based approaches. We have examined in detail the effect of directly attaching mono- or biradicals to induce local paramagnetic relaxation effects and, at the same time, to produce sizable DNP enhancements. Using a membrane-embedded ion channel as an example, we varied the degree of paramagnetic labeling and the location of the DNP probes. Our results show that the creation of local spin clusters can generate sizable DNP enhancements while preserving the intrinsic benefits of paramagnetic relaxation enhancement (PRE)-based NMR approaches. DNP using chemical labeling may hence provide an attractive route to introduce molecular specificity into DNP studies in life science applications and beyond.


Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Related Articles Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements. Biophys J. 2014 Oct 7;107(7):1697-1702 Authors: Lo RH, Kroncke BM, Solomon TL, Columbus L Abstract The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane...
nmrlearner Journal club 0 10-09-2014 07:31 PM
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements Publication date: 7 October 2014 Source:Biophysical Journal, Volume 107, Issue 7</br> Author(s): Ryan*H. Lo , Brett*M. Kroncke , Tsega*L. Solomon , Linda Columbus</br> The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the...
nmrlearner Journal club 0 10-08-2014 04:17 AM
[NMR paper] Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis.
Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Mapping the UDP-N-acetylglucosamine regulatory site of human glucosamine-6P synthase by saturation-transfer difference NMR and site-directed mutagenesis. Biochimie. 2014 Feb;97:39-48 Authors: Assrir N, Richez C, Durand P, Guittet E, Badet B, Lescop E,...
nmrlearner Journal club 0 08-27-2014 02:29 PM
[NMR paper] Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
From Mendeley Biomolecular NMR group: Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. Journal of biomolecular NMR (2012). Volume: 52, Issue: 1. Pages: 65-77. Chandar S Thakur, T Kwaku Dayie et al. Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli...
nmrlearner Journal club 0 01-21-2013 02:09 PM
[NMR paper] Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
From Mendeley Biomolecular NMR group: Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. Journal of biomolecular NMR (2012). Volume: 52, Issue: 1. Pages: 65-77. Chandar S Thakur, T Kwaku Dayie et al. Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli...
nmrlearner Journal club 0 11-22-2012 11:49 AM
[NMR paper] Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.
From Mendeley Biomolecular NMR group: Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. Journal of biomolecular NMR (2012). Volume: 52, Issue: 1. Pages: 65-77. Chandar S Thakur, T Kwaku Dayie et al. Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli...
nmrlearner Journal club 0 10-12-2012 09:58 AM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease Tomasz L. Religa, Amy M. Ruschak, Rina Rosenzweig and Lewis E. Kay http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202259a/aop/images/medium/ja-2011-02259a_0002.gif Journal of the American Chemical Society DOI: 10.1021/ja202259a http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/rQfCMlQFoW8
nmrlearner Journal club 0 05-20-2011 09:17 PM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease. J Am Chem Soc. 2011 May 11; Authors: Religa TL, Ruschak AM, Rosenzweig R, Kay LE Methyl groups are powerful reporters of structure, motion and function in NMR studies of supra-molecular protein assemblies. Their...
nmrlearner Journal club 0 05-12-2011 03:40 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:44 PM.


Map