BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 09:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Basis on qNMR: Rudiments

Basis on qNMR: Rudiments

When I started playing drums, so many years ago, I kept hearing about so-called "Drum Rudiments". By that time, I was too young to realize how important they were and to me, they appear just as boring and repetitive exercises. However, rudiments (basic building blocks or "vocabulary" of drumming) are absolutely essential to master drums (something I have to admit I never achieved :-) )

In the last few years I’ve had the opportunity to meet and interact with many chemists who are using our NMR software. Some of them are NMR specialists with an outstanding knowledge from whom I have learnt a lot. On the other hand, other chemists use NMR on daily basis simply to confirm the structure(s) they have just synthesized but do not have a deep grasp of the inner details of NMR theory and signal data processing. Whilst I understand that in general this is fine, I have noticed recently that many of these less-experienced NMR scientists are now getting involved in more advanced NMR studies and, in my humble opinion, the lack of some important rudiments can lead to an improper interpretation of the NMR data.

One interesting example is quantitative NMR (qNMR), a field which is being used increasingly in the pharmaceutical industry, for instance, to quantify impurity levels, but it’s also very important in the field of natural products (see for example J. Nat. Prod. 2007, 70, 589-595) and for the calibration of other quantitative techniques such as HPLC. Typically, qNMR is based on obtaining quantitative information through integral-based calculations so in principle, it might seem as this is something trivial which does not require any additional effort. Whilst this is generally true, there are some very important rudiments which I think are worth pointing out.
The rudiments I will present in this series of articles will range from basic concepts on NMR Integration to more advanced deconvolution techniques, including our newly developed Global Spectral Deconvolution algorithm, GSD.
So if you have any interest in qNMR, watch this space. I promise to post these qNMR rudiments on a regular basis.






More...

Source: NMR-analysis blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR images] Basis of NMR
http://chem.ch.huji.ac.il/nmr/whatisnmr/whatisnmr_files/basisnmr.gif chem.ch.huji.ac.il 28/06/2011 4:41:43 PM GMT Basis of NMR More...
nmrlearner NMR pictures 0 07-30-2011 11:50 AM
[NMR images] The basis of NMR spectroscopy
http://site.motifolio.com/images/The-basis-of-NMR-spectroscopy-6111167.png motifolio.com 1/02/2011 6:41:12 PM GMT The basis of NMR spectroscopy More...
nmrlearner NMR pictures 0 02-01-2011 06:40 PM
[NMR analysis blog] Basis on qNMR: Integration Rudiments (Part II)
Basis on qNMR: Integration Rudiments (Part II) My last post was a basic survey on different measurement strategies for peak areas. Manual methods such as counting squares or cutting and weighing, known as ‘boundary methods’ were introduced for historical reasons. These methods were first used by engineers, cartographers, etc, end then quickly adopted by spectroscopists and chromatographers. In the digital era, most common peak area measurement involves the calculation of the running sum of all points within the peak(s) boundaries or by other quadrature method (e.g. Trapezoid, Simpson,...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM
[NMR analysis blog] Basis on qNMR: Integration Rudiments (Part I)
Basis on qNMR: Integration Rudiments (Part I) First a quick recap. In my last post I put forward the idea that integration of NMR peaks is the basis of quantitative analysis. Before going any further, I would like to mention that, alternatively, peak heights can also be used for quantitation, but unless some special pre-processing is employed (see for example P. A. Haysa, R. A. Thompson, Magn. Reson. Chem., 2009, 47, 819 – 824, doi) measurement of peak areas is generally the recommended method for qNMR assays. In this post I will cover some very basic rudiments of NMR peak areas...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM
[NMR analysis blog] Basis on qNMR: Intramolecular vs Mixtures qNMR
Basis on qNMR: Intramolecular vs Mixtures qNMR A bit of historical background NMR has won its reputation as a powerful tool for structure determination of organic molecules. In addition to the information provided by chemical shifts and coupling constants, the quantitative relationships existing between the peaks (or groups of peaks - multiplets) arising from the various nuclides in the sample has proven pivotal for the assignment and interpretation of NMR spectra. Despite the fact that the concept of quantitative NMR (qNMR) has been coupled to NMR since the early 1950, shortly...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 01:25 AM.


Map