BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR

Rate This Post:

Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 08-21-2010, 09:12 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,791
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Basics on Arrayed-NMR Data Analysis (Part II): Practical hints

Basics on Arrayed-NMR Data Analysis (Part II): Practical hints

Further to my previous post, I will cover today some more basic tools available in Mnova for the analysis of NMR arrayed experiments. In particular, I will touch on the following points:
  • How to use different display modes for 1D arrayed spectra
  • How to navigate throughout the different subspectra in the arrayed item
  • How to process individual spectra separately

When an arrayed experiment has been detected, all subspectra are grouped together and plotted in the stacked display mode in Mnova (see figure below). Several points are worth mentioning:

(A). Take a look at the green box in the figure below: it shows the so-called ‘active spectrum’. What does this mean?



The concept of active spectrum is easier to illustrate with the following example: as I wrote in my previous post, in general all the spectra in an arrayed item are processed exactly with the same processing operations. For example, same level of zero filling, same apodization function, same FT type, same phase correction, etc. However, it i’s possible that some particular spectra require a slightly different processing, independently from the others. In order to do that, it i’s necessary to deactivate the ‘Apply Processing to All spectra in Stack’ option.



So if that option is off, any processing operation will be applied only to the active spectrum in the stack.

The question is: how can we change the active spectrum? There are 3 different ways:
  1. Just click on the spectrum you want to be active. This is probably the most intuitive way.
  2. Use SHIFT + Mouse Wheel to navigate throughout all the spectra in the stack, one after the other.
  3. Use SHIFT + Up/Down arrow keys. This is analogous to point 2)
(B). If the number of subspectra (traces) is large (e.g. > 10), working in the stack mode might not be very practical. Quite often, working only with the active spectrum on the screen will be a much better option. This mode can be activated as shown in the image below.



While working on this mode, you will see on the screen just the active spectrum. Should you want to move to another spectrum without resorting to the stack mode, just use methods 2) and 3) described above (Shift+Mouse Wheel or Shift + Up/Down keys).


IMPORTANT: Remember that even if only the active spectrum is visible, unless the “Apply Processing to All spectra in Stack” option is off, all spectra in the stack will also be processed.

(C) Another useful display mode consists of superimposing all subspectra (see figure below). This method is very useful, for example, when you want to check whether some peaks shift their position (for instance, due to differences in pH, temperature, etc., as is common in biofluids spectra).



Finally, there is an additional display mode, the so called whitewashed stacked plot. The whitewashing effect means that the spectra at the front of the display hide the spectra behind them from view, as depicted in the figure below.



This plotting mode can be useful to create nice reports, but it’s important to emphasize that drawing time will be significantly higher than with the other plotting modes, so it is not recommended when processing the spectra in real time (e.g. interactive phase correction).


In my next post I will show how to extract useful information from arrayed spectra.







More...

Source: NMR-analysis blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
EMBO Practical Course: Computational structural biology - from data
EMBO Practical Course: Computational structural biology - from data Hi all, In April we will once again organise the EMBO practical course on "Computational structural biology - from data to structure to function". The More...
nmrlearner Conferences 0 02-21-2012 03:40 AM
[Question from NMRWiki Q&A forum] exporting part of data to excel, origin
exporting part of data to excel, origin Hi,i'm new in TopSpin and i am blocked by a simple (i thinks) problem.I have a 1D specrtrum and i would like to export it to excel or origin but my spectrum have a small S/N so there is to much point --> i want this spectrum with less point but without smoothing (if it's possible).In other word, how can i do to tell TopSpin "get the spectrum but only every 10 points (or X points)" ? Thank you in advance for those who will have the kindness to answer. Check if somebody has answered this question on NMRWiki QA forum
nmrlearner News from other NMR forums 0 06-29-2011 04:51 PM
Nuclear magnetic resonance could be made practical with no magnets! - Daily News & Analysis
<img alt="" height="1" width="1" /> Nuclear magnetic resonance could be made practical with no magnets! Daily News & Analysis Nuclear magnetic resonance (NMR) is one of the principal tools in the chemist's arsenal, used to study everything from alcohols to proteins to such frontiers as quantum computing. However, getting rid of the big, expensive magnets needed for ... Berkeley Lab scientists contribute to remarkable advance in nuclear magnetic ...News-Medical.net Nuclear magnetic resonance could be made practical with no magnets!Newstrack India all 7 news articles &raquo; Nuclear...
nmrlearner Online News 0 05-19-2011 09:02 PM
[NMR paper] Simulation of NMR data from oriented membrane proteins: practical information for exp
Simulation of NMR data from oriented membrane proteins: practical information for experimental design. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-cellhub.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Simulation of NMR data from oriented membrane proteins: practical information for experimental design. Biophys J. 1993 Oct;65(4):1460-9 Authors: Sanders CR, Schwonek JP Several hundred solid state NMR...
nmrlearner Journal club 0 08-22-2010 03:01 AM
[NMR analysis blog] Basics on Arrayed-NMR Data Analysis (Part IV)
Basics on Arrayed-NMR Data Analysis (Part IV) Next up in my survey on analysis of arrayed NMR experiments ( View Parts 1, 2, 3 ) takes me to a quick overview of the different methods of data evaluation, such as the determination of peak heights and peak areas from arrayed experiments. Here you go... Of the different existing methods for the extraction of peak intensities from arrayed NMR spectra (see ), Mnova provides the following ones: (1) Peak area integration This is the default method in Mnova Data Analysis module (see figure below)
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM
[NMR analysis blog] Basics on Arrayed-NMR Data Analysis (Part III): Extracting and calculating useful NMR
Basics on Arrayed-NMR Data Analysis (Part III): Extracting and calculating useful NMR related molecular information After the basic introductory posts on arrayed NMR experiments, it’s now time to get some action and see how to extract relevant information from these experiments and calculate useful NMR related parameters such as diffusion, relaxation times, kinetics constants, etc. Actually, in this post I will cover the first case, that is, the analysis of PFG experiments to calculate diffusion coefficients. The reason for this is twofold: (1) I have a nice PFG data set whilst the...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM
[NMR analysis blog] Basics on Arrayed-NMR Data Analysis (part I)
Basics on Arrayed-NMR Data Analysis (part I) In this post I will cover some basic concepts on the analysis of a very important class of NMR experiments, the so-called Arrayed NMR spectra. The concept is very simple: an arrayed experiment is basically a set of individual spectra acquired sequentially and related to each other through the variation of one or more parameters and finally grouped together to constitute a composite experiment. These experiments are also known as ‘pseudo-2D’. For example, in the case of Bruker spectra they have the same file name as 2D spectra, that is ser files...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM
[NMR analysis blog] Mnova 6.0, at last! GSD, Line Fitting, Data Analysis, handling of LC/GC/MS data and m
Mnova 6.0, at last! GSD, Line Fitting, Data Analysis, handling of LC/GC/MS data and much more! It's been over 6 weeks since my last post on this blog but don’t worry, I haven’t been idle. On the contrary, I have a very good excuse for this lack of posts: We all at Mestrelab have been working very hard trying to get version 6.0 of Mnova finished. Now I’m delighted to announce that we have done it and version 6.0 is finally available for download from our Web site. This is certainly a major upgrade of the software in which we have put a lot of work and passion. It brings a number of...
nmrlearner News from NMR blogs 0 08-21-2010 09:12 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:54 PM.


Map