BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 05-17-2013, 07:00 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry

From The DNP-NMR Blog:

Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry

Hilty, C. and S. Bowen, Applications of dynamic nuclear polarization to the study of reactions and reagents in organic and biomolecular chemistry. Organic & Biomolecular Chemistry, 2010. 8(15): p. 3361-3365.


http://dx.doi.org/10.1039/C004420M


Nuclear Magnetic Resonance (NMR) is an important spectroscopic tool for the identification and structural characterization of molecules in chemistry and biochemistry. The most significant limitation of NMR compared to other spectroscopies is its relatively low sensitivity, which thus often requires long measurement times or large amounts of sample. A way of increasing sensitivity of single scan NMR spectra by several orders of magnitude is through hyperpolarization of nuclear spins. Dynamic nuclear polarization allows hyperpolarization of most spins in small molecules encountered in chemistry and biochemistry. NMR spectra of small amounts of samples from natural source, or from chemical synthesis can readily be acquired. Perhaps more interestingly, the availability of the entire hyperpolarized NMR signal in one single scan allows the measurement of transient processes in real time, if applied together with a stopped-flow technique. Through observation of chemical shift, different reactant and product species can be distinguished, and kinetics and mechanisms, for example in enzyme catalyzed reactions, can be elucidated. Real-time hyperpolarization-enhanced NMR is uniquely amenable to correlating atomic positions not only through space, but also over time between reactant and product species. Such correlations carry mechanistic information about a reaction, and can prove reaction pathways. Applications of this technique are emerging in different areas of chemistry concerned with rapid reactions, including not only enzymatic processes, but also chemical catalysis and protein folding.




Go to The DNP-NMR Blog for more info.
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR tweet] Organic Chemistry - NMR - Nuclear Magnetic Resonance Made Easy(1/6) Electronegativity and Shielding: Organic C... http://t.co/Sb4kIorQxP
Organic Chemistry - NMR - Nuclear Magnetic Resonance Made Easy(1/6) Electronegativity and Shielding: Organic C... http://t.co/Sb4kIorQxP Published by bionmr (Bio NMR) on 2013-04-29T12:44:08Z Source: Twitter
nmrlearner Twitter NMR 0 04-29-2013 01:37 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-17-2013 08:15 PM
Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials
From the The DNP-NMR Blog: Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials Kobayashi, T., et al., Analysis of sensitivity enhancement by dynamic nuclear polarization in solid-state NMR: a case study of functionalized mesoporous materials. Phys Chem Chem Phys, 2013. 15(15): p. 5553-62. http://www.ncbi.nlm.nih.gov/pubmed/23459985
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Dynamic Nuclear Polarization Study of Inhibitor Binding to the M218-60 Proton Transporter from Influenza A
From the The DNP-NMR Blog: Dynamic Nuclear Polarization Study of Inhibitor Binding to the M218-60 Proton Transporter from Influenza A Andreas, L.B., et al., Dynamic Nuclear Polarization Study of Inhibitor Binding to the M218-60 Proton Transporter from Influenza A. Biochemistry, 2013. http://www.ncbi.nlm.nih.gov/pubmed/23480101
nmrlearner News from NMR blogs 0 04-15-2013 08:52 AM
Rapid Injection NMR Reveals ?3 ‘?-Allyl’ CuIII Intermediates in Addition Reactions of Organocuprate Reagents
Rapid Injection NMR Reveals ?3 ‘?-Allyl’ CuIII Intermediates in Addition Reactions of Organocuprate Reagents Steven H. Bertz, Richard A. Hardin, Michael D. Murphy, Craig A. Ogle, Joshua D. Richter and Andy A. Thomas http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja3022363/aop/images/medium/ja-2012-022363_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja3022363 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/FjoEID-4z0g
nmrlearner Journal club 0 05-25-2012 07:14 PM
[NMR900 blog] Cover article in Organic & Biomolecular Chemistry
Cover article in Organic & Biomolecular Chemistry J. Guimond-Tremblay, M.-C. Gagnon, J.-A. Pineault-Maltais, V. Turcotte, M. Auger, J.-F. Paquin, "Synthesis and properties of monofluorinated dimyristoylphosphatidylcholine derivatives: Potential fluorinated probes for the study of membrane topology," Organic and Biomolecular Chemistry 10 (2012) 1145-1148. (Cover Article) http://dx.doi.org/10.1039/c2ob06570c https://blogger.googleusercontent.com/tracker/8663203727601106205-5483999220580812850?l=nmr900.blogspot.com Read complete story on NMR900 blog
nmrlearner News from NMR blogs 0 02-24-2012 10:27 AM
[NMR tweet] Nuclear Magnetic Resonance Applications to Organic Chemistry: Nuclear Magnetic Resonance? http://goo.gl/fb/5spOY
Nuclear Magnetic Resonance Applications to Organic Chemistry: Nuclear Magnetic Resonance? http://goo.gl/fb/5spOY Published by ebooksfreedl (ebooksfreedownload) on 2011-01-29T01:27:23Z Source: Twitter
nmrlearner Twitter NMR 0 01-29-2011 01:31 AM
[NMR tweet] [science] Nuclear Magnetic Resonance Applications to Organic Chemistry: Mcgraw-hill B
Nuclear Magnetic Resonance Applications to Organic Chemistry: Mcgraw-hill Book Company | 1959 | ISBN: ... http://bit.ly/cSiUIm Published by ebook30 (EBOOK30.com) on 2010-11-12T12:46:34Z Source: Twitter
nmrlearner Twitter NMR 0 11-12-2010 12:57 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 08:08 PM.


Map