59Co is a very receptive, 100% naturally abundant, spin I = 7/2 quadrupolar nuclide with a chemical shift range spanning some 18,000 ppm. The 59Co NMR spectra of symmetric diamagnetic cobalt III complexes are characterized by relatively sharp resonances of a few Hz to tens of Hz. The chemical shifts are extremely sensitive to temperature, pressure and solvent effects. The temperature sensitivity of the chemical shift is largely due to the shortening or elongation of the chemical bonds between the cobalt and the surrounding ligands as a function of temperature. The figure below shows 59Co NMR spectra of K3[Co(CN)6] in D2O on a 300 MHz NMR spectrometer collected as a function of temperature and time. The spectrum in the bottom trace of the stacked plot was for a sample equilibrated at 21°C. The temperature was them set at 60°C and 80 single scan spectra were collected over a 9 minute period of time. One can see that as the sample begins to warm up, the resonance moves to higher chemical shifts and broadens severely owing to a temperature gradient over the length of the sample. As time passes and the temperature (read at the thermocouple in the probe) becomes stable, the chemical shift approaches a constant value while the line width narrows as the temperature gradient over the length of the sample becomes smaller. The chemical shift change was measured to be 1.56 ppm/°C. The data emphasize that temperature regulation is extremely important when collecting or reporting 59Co NMR data.
[NMR paper] Recrystallized S-layer protein of a probiotic propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.
Recrystallized S-layer protein of a probiotic propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.
Recrystallized S-layer protein of a probiotic propionibacterium: structural and nanomechanical changes upon temperature or pH shifts probed by solid-state NMR and AFM.
Langmuir. 2014 Dec 5;
Authors: De Sa Peixoto P, Roiland C, Thomas D, Briard-Bion V, Le Guellec R, Parayre S, Deutsch SM, Jan G, Guyomarc'h F
Abstract
Surface protein layers (S layers) are common...
nmrlearner
Journal club
0
12-06-2014 05:18 PM
pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements
pH-dependent random coil 1H, 13C, and 15N chemical shifts of the ionizable amino acids: a guide for protein pK a measurements
Abstract
The pK a values and charge states of ionizable residues in polypeptides and proteins are frequently determined via NMR-monitored pH titrations. To aid the interpretation of the resulting titration data, we have measured the pH-dependent chemical shifts of nearly all the 1H, 13C, and 15N nuclei in the seven common ionizable amino acids (XÂ*=Â*Asp, Glu, His, Cys, Tyr, Lys, and Arg)...
nmrlearner
Journal club
0
09-20-2014 05:45 AM
[NMR paper] Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Related Articles Probing the sweet determinants of brazzein: wild-type brazzein and a tasteless variant, brazzein-ins(R18a-I18b), exhibit different pH-dependent NMR chemical shifts.
Biochem Biophys Res Commun. 2005 Sep 16;335(1):256-63
Authors: Zhao Q, Song J, Jin Z, Danilova V, Hellekant G, Markley JL
Brazzein is a small, intensely sweet protein. As a probe of the functional...
nmrlearner
Journal club
0
12-01-2010 06:56 PM
Temperature-dependent oligomerization in M-crystallin: Lead or lag toward cataract, an NMR perspective.
Temperature-dependent oligomerization in M-crystallin: Lead or lag toward cataract, an NMR perspective.
Related Articles Temperature-dependent oligomerization in M-crystallin: Lead or lag toward cataract, an NMR perspective.
Proteins. 2010 Oct 11;
Authors: Barnwal RP, Devi KM, Agarwal G, Sharma Y, Chary KV
The oligomerization and/or aggregation of proteins is of critical importance in a wide variety of biomedical situations, ranging from abnormal disease states like Alzheimer's and Parkinson's disease to the production of inclusion bodies,...
nmrlearner
Journal club
0
12-01-2010 04:41 PM
[NMR paper] Sequence-dependent correction of random coil NMR chemical shifts.
Sequence-dependent correction of random coil NMR chemical shifts.
Related Articles Sequence-dependent correction of random coil NMR chemical shifts.
J Am Chem Soc. 2001 Apr 4;123(13):2970-8
Authors: Schwarzinger S, Kroon GJ, Foss TR, Chung J, Wright PE, Dyson HJ
Random coil chemical shifts are commonly used to detect secondary structure elements in proteins in chemical shift index calculations. While this technique is very reliable for folded proteins, application to unfolded proteins reveals significant deviations from measured random coil...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] The NMR solution structure and characterization of pH dependent chemical shifts of th
The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.
Related Articles The NMR solution structure and characterization of pH dependent chemical shifts of the beta-elicitin, cryptogein.
J Biomol NMR. 1998 Nov;12(4):523-34
Authors: Gooley PR, Keniry MA, Dimitrov RA, Marsh DE, Keizer DW, Gayler KR, Grant BR
The NMR structure of the 98 residue beta-elicitin, cryptogein, which induces a defence response in tobacco, was determined using 15N and 13C/15N labelled protein samples. In aqueous...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conf
1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif Related Articles 1H- and 13C-NMR investigation of redox-state-dependent and temperature-dependent conformation changes in horse cytochrome c.
Eur J Biochem. 1993 Feb 1;211(3):555-62
Authors: Turner DL, Williams RJ
The redox-state dependent changes in chemical shift, which have...
nmrlearner
Journal club
0
08-21-2010 11:53 PM
[NMR paper] 13C magic angle spinning NMR study of the light-induced and temperature-dependent cha
13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in tyrosine.
Related Articles 13C magic angle spinning NMR study of the light-induced and temperature-dependent changes in Rhodobacter sphaeroides R26 reaction centers enriched in tyrosine.
Biochemistry. 1992 Nov 17;31(45):11038-49
Authors: Fischer MR, de Groot HJ, Raap J, Winkel C, Hoff AJ, Lugtenburg J
Solid-state 13C magic angle spinning (MAS) NMR has been used to investigate...