BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > NMR community > News from NMR blogs
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 12-09-2014, 01:07 AM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,783
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default 1d 1h - 31p hoesy

1D 1H - 31P HOESY

2D Heteronuclear Overhauser Effect SpectroscopY (HOESY) is an effective way to determine whether or not a pair of heteronuclear spins are close to one another in space. It is particularly effective for 1H and 31P where both nuclides are 100% naturally abundant. 2D experiments, however, can be quite time consuming. Alternatively, one can obtain 1D 1H detected 1H - 31P HOESY data to save data collection time. When only one 31P resonance is present, the data can be obtained using nonselective 31P pulses. An example of this, using the, using the pulse sequence from the reference1 below, is shown in the figure. The HOESY spectrum is on top while the simple 1H spectrum is on the bottom. One can see that heteronuclear 1H - 31P NOE's are apparent on the bridging methylene protons and the ortho-aromatic protons. Neither the meta- nor para-aromatic protons show significant heteronuclear NOE's.


1. L.E. Combettes, P. Clausen-Thue, M.A. King, B. Odell, A.L. Thompson, V. Gouverneur and T.D.W. Claridge. Chem. Eur. J. 18, 13133 (2012).


Source: University of Ottawa NMR Facility Blog
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[U. of Ottawa NMR Facility Blog] 1D Selective 1H - 19F HOESY
1D Selective 1H - 19F HOESY 2D Heteronuclear Overhauser Effect SpectroscopY (HOESY) is an effective way to determine whether or not a pair of heteronuclear spins are close to one another in space. It is particularly effective for 1H and 19F where both nuclides are 100% naturally abundant. 2D 19F detected 19F - 1H HOESY data are typically obtained which provide all NOE correlations. 2D experiments, however, can be quite time consuming, especially when only a few NOE correlations are sought after. In such cases, 1D 1H detected 1H - 19F HOESY experiments1 are very desirable and can save...
nmrlearner News from NMR blogs 0 12-06-2014 04:54 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2025, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 04:46 PM.


Map