The nitroxide-based 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) free radical is widely used in 13C dynamic nuclear polarization (DNP) due to its relatively low cost, commercial availability, and effectiveness as polarizing agent. While a large number of TEMPO derivatives are available commercially, so far, only few have been tested for use in 13C DNP. In this study, we have tested and evaluated the 13C hyperpolarization efficiency of eight derivatives of TEMPO free radical with different side arms in the 4-position. In general, these TEMPO derivatives were found to have slight variations in efficiency as polarizing agents for DNP of 3 M [1-13C] acetate in 1:1 v/v ethanol:water at 3.35 T and 1.2 K. X-band electron paramagnetic resonance (EPR) spectroscopy revealed no significant differences in the spectral features among these TEMPO derivatives. 2H enrichment of the ethanol:water glassing matrix resulted in further improvement of the solid-state 13C DNP signals by factor of 2 to 2.5-fold with respect to the 13C DNP signal of non-deuterated DNP samples. These results suggest an interaction between the nuclear Zeeman reservoirs and the electron dipolar system via the thermal mixing mechanism.
p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica} p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px Helvetica}
Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples #DNPNMR
From The DNP-NMR Blog:
Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Salnikov, E.S., et al., Dynamic Nuclear Polarization/Solid-State NMR Spectroscopy of Membrane Polypeptides: Free-Radical Optimization for Matrix-Free Lipid Bilayer Samples. ChemPhysChem, 2017. 18(15): p. 2103-2113.
https://www.ncbi.nlm.nih.gov/pubmed/28574169
nmrlearner
News from NMR blogs
0
09-25-2017 08:42 PM
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP
From The DNP-NMR Blog:
Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI #DNPNMR #ODNP
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Utsumi, H. and F. Hyodo, Free Radical Imaging Using In Vivo Dynamic Nuclear Polarization-MRI. Methods Enzymol, 2015. 564: p. 553-71.
https://www.ncbi.nlm.nih.gov/pubmed/26477265
nmrlearner
News from NMR blogs
0
08-18-2017 04:59 PM
Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR
From The DNP-NMR Blog:
Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Hyodo, F., et al., Simultaneous and spectroscopic redox molecular imaging of multiple free radical intermediates using dynamic nuclear polarization-magnetic resonance imaging. Anal Chem, 2014. 86(15): p. 7234-8.
https://www.ncbi.nlm.nih.gov/pubmed/25036767
nmrlearner
News from NMR blogs
0
08-17-2017 12:56 AM
[NMR paper] Dynamic nuclear polarization / solid-state NMR of membrane polypeptides. Free radical optimization for matrix-free lipid bilayer samples.
Dynamic nuclear polarization / solid-state NMR of membrane polypeptides. Free radical optimization for matrix-free lipid bilayer samples.
Related Articles Dynamic nuclear polarization / solid-state NMR of membrane polypeptides. Free radical optimization for matrix-free lipid bilayer samples.
Chemphyschem. 2017 Jun 02;:
Authors: Ouari O, Salnikov ES, Abel S, Karthikeyan G, Karoui H, Aussenac F, Tordo P, Bechinger B
Abstract
Dynamic Nuclear Polarization boosts the sensitivity of NMR spectroscopy by orders of magnitude making...
nmrlearner
Journal club
0
06-03-2017 11:49 AM
19F Dynamic Nuclear Polarization and SEM in Suspensions Consisting of Fluorobenzene Derivatives and Asphaltene Extracted from MC-800 Liquid Asphalt #DNPNMR
From The DNP-NMR Blog:
19F Dynamic Nuclear Polarization and SEM in Suspensions Consisting of Fluorobenzene Derivatives and Asphaltene Extracted from MC-800 Liquid Asphalt #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Kirimli, H.E. and H. Ovalioglu, 19F Dynamic Nuclear Polarization and SEM in Suspensions Consisting of Fluorobenzene Derivatives and Asphaltene Extracted from MC-800 Liquid Asphalt. Journal of Dispersion Science and Technology, 2014. 35(2): p. 255-264.
https://doi.org/10.1080/01932691.2013.767208
nmrlearner
News from NMR blogs
0
01-09-2017 04:21 PM
Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
From The DNP-NMR Blog:
Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical #DNPNMR
Kiswandhi, A., et al., Impact of Ho3+-doping on 13C dynamic nuclear polarization using trityl OX063 free radical. Phys. Chem. Chem. Phys., 2016. 18(31): p. 21351-21359.
http://dx.doi.org/10.1039/C6CP03954E
nmrlearner
News from NMR blogs
0
09-22-2016 10:41 PM
Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO
From The DNP-NMR Blog:
Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO
Noda, Y., et al., Thermosetting polymer for dynamic nuclear polarization: Solidification of an epoxy resin mixture including TEMPO. Nucl. Instrum. Methods Phys. Res., Sect. A, 2015. 776(0): p. 8-14.
http://dx.doi.org/10.1016/j.nima.2014.11.114
nmrlearner
News from NMR blogs
0
05-15-2015 08:02 PM
Radical-free dynamic nuclear polarization using electronic defects in silicon
From The DNP-NMR Blog:
Radical-free dynamic nuclear polarization using electronic defects in silicon
Cassidy, M.C., et al., Radical-free dynamic nuclear polarization using electronic defects in silicon. Physical Review B, 2013. 87(16): p. 161306.
http://link.aps.org/doi/10.1103/PhysRevB.87.161306