Niedbalski, P., et al., (13)C Dynamic Nuclear Polarization Using a Trimeric Gd(3+) Complex as an Additive. J. Phys. Chem. A, 2017. 121(27): p. 5127-5135.
Dissolution dynamic nuclear polarization (DNP) is one of the most successful techniques that resolves the insensitivity problem in liquid-state nuclear magnetic resonance (NMR) spectroscopy and imaging (MRI) by amplifying the signal by several thousand-fold. One way to further improve the DNP signal is the inclusion of trace amounts of lanthanides in DNP samples doped with trityl OX063 free radical as the polarizing agent. In practice, stable monomeric gadolinium complexes such as Gd-DOTA or Gd-HP-DO3A are used as beneficial additives in DNP samples, further boosting the DNP-enhanced solid-state (13)C polarization by a factor of 2 or 3. Herein, we report on the use of a trimeric gadolinium complex as a dopant in (13)C DNP samples to improve the (13)C DNP signals in the solid-state at 3.35 T and 1.2 K and consequently, in the liquid-state at 9.4 T and 298 K after dissolution. Our results have shown that doping the (13)C DNP sample with a complex which holds three Gd(3+) ions led to an improvement of DNP-enhanced (13)C polarization by a factor of 3.4 in the solid-state, on par with those achieved using monomeric Gd(3+) complexes but only requires about one-fifth of the concentration. Upon dissolution, liquid-state (13)C NMR signal enhancements close to 20000-fold, approximately 3-fold the enhancement of the control samples, were recorded in the nearby 9.4 T high resolution NMR magnet at room temperature. Comparable reduction of (13)C spin-lattice T1 relaxation time was observed in the liquid-state after dissolution for both the monomeric and trimeric Gd(3+) complexes. Moreover, W-band electron paramagnetic resonance (EPR) data have revealed that 3-Gd doping significantly reduces the electron T1 of the trityl OX063 free radical, but produces negligible changes in the EPR spectrum, reminiscent of the results with monomeric Gd(3+)-complex doping. Our data suggest that the trimeric Gd(3+) complex is a highly beneficial additive in (13)C DNP samples and that its effect on DNP efficiency can be described in the context of the thermal mixing mechanism.
Dynamic Nuclear Polarization Signal Amplification as a Sensitive Probe for Specific Functionalization of Complex Paper Substrates #DNPNMR
From The DNP-NMR Blog:
Dynamic Nuclear Polarization Signal Amplification as a Sensitive Probe for Specific Functionalization of Complex Paper Substrates #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Gutmann, T., et al., Dynamic Nuclear Polarization Signal Amplification as a Sensitive Probe for Specific Functionalization of Complex Paper Substrates. The Journal of Physical Chemistry C, 2017. 121(7): p. 3896-3903.
http://dx.doi.org/10.1021/acs.jpcc.6b11751
nmrlearner
News from NMR blogs
0
04-05-2017 02:30 PM
Dynamic Nuclear Polarization of ?-Cyclodextrin Macromolecules #DNPNMR
From The DNP-NMR Blog:
Dynamic Nuclear Polarization of ?-Cyclodextrin Macromolecules #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Caracciolo, F., et al., Dynamic Nuclear Polarization of ?-Cyclodextrin Macromolecules. The Journal of Physical Chemistry B, 2017.
http://dx.doi.org/10.1021/acs.jpcb.7b00836
nmrlearner
News from NMR blogs
0
04-03-2017 05:37 PM
Microwave-gated dynamic nuclear polarization #DNPNMR
From The DNP-NMR Blog:
Microwave-gated dynamic nuclear polarization #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Bornet, A., et al., Microwave-gated dynamic nuclear polarization. Phys. Chem. Chem. Phys., 2016. 18(44): p. 30530-30535.
http://dx.doi.org/10.1039/C6CP05587G
nmrlearner
News from NMR blogs
0
12-15-2016 02:04 AM
Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures #DNPNMR
From The DNP-NMR Blog:
Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures #DNPNMR
p.p1 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 12.0px Helvetica}
Grüning, W.R., et al., Phenylazide Hybrid-Silica - Polarization Platform for Dynamic Nuclear Polarization at Cryogenic Temperatures. Helvetica Chimica Acta, 2016: p. n/a-n/a.
http://dx.doi.org/10.1002/hlca.201600122
Essentials of Dynamic Nuclear Polarization #DNPNMR
From The DNP-NMR Blog:
Essentials of Dynamic Nuclear Polarization #DNPNMR
Dear Colleague,
It is my pleasure to announce that a limited edition of
`Essentials of Dynamic Nuclear Polarization'
is now available at the UK branch of Amazon: www.amazon.co.uk