Related ArticleswwwwMethyl NMR Spectroscopy: Measurement of Dynamics in Viral RNA-directed RNA Polymerases.
Methods. 2018 May 29;:
Authors: Alphonse S, Ghose R
Abstract
Measurement of nuclear spin relaxation provides a powerful approach to access information about biomolecular conformational dynamics over several orders of magnitude in timescale. In several cases this knowledge in combination with spatial information from three-dimensional structures yields unique insight into protein stability and the kinetics and thermodynamics of their interactions and function. However, due to intrinsic difficulties in studying large systems using solution state nuclear magnetic resonance (NMR) approaches, until recently these measurements were limited to small-to-medium-sized systems. However, the development of a wide range of novel strategies that allow the selective isotope labeling of methyl groups in proteins have allowed the exploitation of the unique relaxation properties of this spin-system. This has in turn enabled the extension of NMR approaches to high molecular weight proteins including a variety of enzymes and their complexes. Here, we recount our experiences in obtaining assignments of the methyl resonances for two representative members of a class of RNA-directed RNA polymerases (RdRps) encoded by bacteriophages of the Cystoviridae family. We demonstrate the utility of these methyl probes, limited in number for one case and more numerous for the other, to investigate the conformational dynamics of RdRps on the fast (ps-ns) and slow (?s-ms) timescales.
PMID: 29857193 [PubMed - as supplied by publisher]
Structures, Dynamics, and Functions of Viral Membrane Proteins by NMR
Structures, Dynamics, and Functions of Viral Membrane Proteins by NMR
Publication date: 2 February 2018
Source:Biophysical Journal, Volume 114, Issue 3, Supplement 1</br>
Author(s): Luis G. Basso, Sang H. Park, Antonio J. Costa-Filho, Stanley J. Opella</br>
</br></br>
</br></br>
More...
nmrlearner
Journal club
0
02-07-2018 03:41 PM
[NMR paper] Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling.
Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling.
Related Articles Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling.
Chemistry. 2015 Sep 7;21(37):12971-7
Authors: van der Cruijsen EA, Koers EJ, Sauvée C, Hulse RE, Weingarth M, Ouari O, Perozo E, Tordo P, Baldus M
Abstract
Dynamic nuclear polarization (DNP) has been shown to greatly enhance spectroscopic sensitivity, creating novel opportunities for NMR studies on complex and large molecular assemblies in life and material...
nmrlearner
Journal club
0
09-01-2015 10:48 AM
Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling
From The DNP-NMR Blog:
Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling
van der Cruijsen, E.A.W., et al., Biomolecular DNP-Supported NMR Spectroscopy using Site-Directed Spin Labeling. Chemistry – A European Journal, 2015: p. n/a-n/a.
http://dx.doi.org/10.1002/chem.201501376
nmrlearner
News from NMR blogs
0
08-11-2015 02:50 AM
[NMR paper] Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Related Articles Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR (15)N-Relaxation Measurements.
Biophys J. 2014 Oct 7;107(7):1697-1702
Authors: Lo RH, Kroncke BM, Solomon TL, Columbus L
Abstract
The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane...
nmrlearner
Journal club
0
10-09-2014 07:31 PM
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements
Mapping Membrane Protein Backbone Dynamics: A Comparison of Site-Directed Spin Labeling with NMR 15N-Relaxation Measurements
Publication date: 7 October 2014
Source:Biophysical Journal, Volume 107, Issue 7</br>
Author(s): Ryan*H. Lo , Brett*M. Kroncke , Tsega*L. Solomon , Linda Columbus</br>
The ability to detect nanosecond backbone dynamics with site-directed spin labeling (SDSL) in soluble proteins has been well established. However, for membrane proteins, the nitroxide appears to have more interactions with the protein surface, potentially hindering the...
nmrlearner
Journal club
0
10-08-2014 04:17 AM
?,?-CHF- and?,?-CHCl-dGTPDiastereomers: Synthesis, Discrete 31P*NMR Signatures,and Absolute Configurations of New Stereochemical Probes for DNA Polymerases
?,?-CHF- and?,?-CHCl-dGTPDiastereomers: Synthesis, Discrete 31P*NMR Signatures,and Absolute Configurations of New Stereochemical Probes for DNA Polymerases
Yue Wu, Valeria M. Zakharova, Boris A. Kashemirov, Myron F. Goodman, Vinod K. Batra, Samuel H. Wilson and Charles E. McKenna
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja300218x/aop/images/medium/ja-2012-00218x_0007.gif
Journal of the American Chemical Society
DOI: 10.1021/ja300218x
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA...
nmrlearner
Journal club
0
05-19-2012 06:11 AM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supramolecular Protein Systems: Applications to the Proteasome and to the ClpP Protease
Tomasz L. Religa, Amy M. Ruschak, Rina Rosenzweig and Lewis E. Kay
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja202259a/aop/images/medium/ja-2011-02259a_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja202259a
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/rQfCMlQFoW8
nmrlearner
Journal club
0
05-20-2011 09:17 PM
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
Site-Directed Methyl Group Labeling as an NMR Probe of Structure and Dynamics in Supra-Molecular Protein Systems: Applications to the Proteasome and to the ClpP Protease.
J Am Chem Soc. 2011 May 11;
Authors: Religa TL, Ruschak AM, Rosenzweig R, Kay LE
Methyl groups are powerful reporters of structure, motion and function in NMR studies of supra-molecular protein assemblies. Their...