Publication year: 2011 Source: Journal of Magnetic Resonance, Available online 1 October 2011
Kang*Chen, Nico*Tjandra
Protein backboneN NMR spin relaxation rates are useful in characterizing the protein dynamics and structures. To observe the protein nuclear-spin resonances a pulse sequence has to include a water suppression scheme. There are two commonly employed methods, saturating or dephasing the water spins with pulse field gradients and keeping them unperturbed with flip-back pulses. Here different water suppression methods were incorporated into pulse sequences to measureN longitudinalT1and transversal rotating-frameT1?spin relaxation. Unexpectedly theNT1relaxation time constants varied significantly with the choice of water suppression method. For a 25-kDaE.coli. glutamine binding protein (GlnBP) theT1values acquired with the pulse sequence containing a water dephasing gradient are on average 20% longer than the ones obtained using a pulse sequence containing the water flip-back pulse. In contrast the twoT1 ?data sets are correlated without an apparent offset. The averageT1difference was reduced to 12% when the experimental recycle delay was doubled, while the averageT1values from the flip-back measurements were nearly unchanged. Analysis of spectral signal to noise ratios (s/n) showed the apparent slowerN relaxation obtained with the water dephasing experiment originated from the differences inHNrecovery for each relaxation time point. This in turn offset signal reduction fromN relaxation decay. The artifact becomes noticeable when the measuredN relaxation time constant is comparable to recycle delay, e.g., theNT1of medium to large proteins. TheN relaxation rates measured with either water suppression schemes yield reasonable fits to the structure. However, data from the saturated scheme results in significantly lower Model-Free order parameters ( = 0.81) than the non-saturated ones ( = 0.88), indicating such order parameters may be previously underestimated. Graphical abstract
Highlights
? Different water suppression methods were adopted to measure NMR relaxation. ? SlowerNT1rates were identified when the water was saturated in the experiment. ? The cause for the slowerT1relaxation is the non-uniformHNrecovery. ? SlowerT1relaxation leads to apparent lower Model-Free order parameters.
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange
Abstract Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to...
nmrlearner
Journal club
0
09-30-2011 08:01 PM
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution
A Practical Guide to Protein Dynamics From 15N Spin Relaxation in Solution
Publication year: 2011
Source: Progress in Nuclear Magnetic Resonance Spectroscopy, In Press, Accepted Manuscript, Available online 7 January 2011</br>
S. Bastien, Morin</br>
More...
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br>
Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br>
The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...
nmrlearner
Journal club
0
11-11-2010 04:33 PM
[NMR paper] Rapid amide proton exchange rates in peptides and proteins measured by solvent quench
Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Rapid amide proton exchange rates in peptides and proteins measured by solvent quenching and two-dimensional NMR.
Protein Sci. 1995 Apr;4(4):804-14
Authors: Zhang YZ,...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and
Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
Related Articles Relaxation-matrix formalism for rotating-frame spin-lattice proton NMR relaxation and magnetization transfer in the presence of an off-resonance irradiation field.
J Magn Reson B. 1994 May;104(1):11-25
Authors: Kuwata K, Brooks D, Yang H, Schleich T
The derivation of a generalized relaxation matrix equation for the off-resonance rotating-frame spin-lattice...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic bindi
19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin.
Related Articles 19F-NMR spin-spin relaxation (T2) method for characterizing volatile anesthetic binding to proteins. Analysis of isoflurane binding to serum albumin.
Biochemistry. 1992 Aug 11;31(31):7069-76
Authors: Dubois BW, Evers AS
This paper characterizes the low-affinity ligand binding interactions of a fluorinated volatile anesthetic, isoflurane (CHF2OCHClCF3), with bovine serum albumin...