Related ArticlesWater Proton NMR-A Tool for Protein Aggregation Characterization.
Anal Chem. 2017 Apr 25;:
Authors: Taraban MB, DePaz RA, Lobo B, Yu YB
Abstract
Formulation stability is a critical attribute of any protein-based biopharmaceutical drug due to a protein's inherent tendency to aggregate. Advanced analytical techniques currently used for characterization of protein aggregates are prone to a number of limitations, and usually require additional manipulations with the sample, such as dilution, separation, labeling and use of special cuvettes. In the present work, we compared conventional techniques for the analysis of protein aggregates with a novel approach that employs the water proton transverse relaxation rate R2(1H2O). We explored differences in the sensitivity of conventional techniques-size-exclusion chromatography (SEC), micro-flow imaging (MFI), and dynamic light scattering (DLS)-and water NMR (wNMR) towards the presence of monoclonal antibody aggregates generated by different stresses. We demonstrate that wNMR outperformed SEC, DLS, and MFI in that it was most consistently sensitive to increases in both soluble and insoluble aggregates, including subvisible particles. The simplicity of wNMR, its sensitivity, and possibility of noninvasive measurements are unique advantages that would permit its application for more efficient and higher throughput optimization of protein formulations.
PMID: 28440620 [PubMed - as supplied by publisher]
Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes
From The DNP-NMR Blog:
Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes
Song, J., O.H. Han, and S. Han, Nanometer-scale water- and proton-diffusion heterogeneities across water channels in polymer electrolyte membranes. Angew Chem Int Ed Engl, 2015. 54(12): p. 3615-20.
http://www.ncbi.nlm.nih.gov/pubmed/25630609
nmrlearner
News from NMR blogs
0
09-25-2015 09:05 AM
Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings
Improvements to REDCRAFT: a software tool for simultaneous characterization of protein backbone structure and dynamics from residual dipolar couplings
Abstract
Within the past two decades, there has been an increase in the acquisition of residual dipolar couplings (RDC) for investigations of biomolecular structures. Their use however is still not as widely adopted as the traditional methods of structure determination by NMR, despite their potential for extending the limits in studies that examine both the structure and dynamics of biomolecules. This...
nmrlearner
Journal club
0
11-17-2014 12:48 PM
Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation
From The DNP-NMR Blog:
Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation
This article was already published in 2009 but unfortunately I missed it.
Pavlova, A., et al., Site-specific dynamic nuclear polarization of hydration water as a generally applicable approach to monitor protein aggregation. Phys. Chem. Chem. Phys., 2009. 11(31): p. 6833-6839.
nmrlearner
News from NMR blogs
0
11-21-2013 01:14 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group:
Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al.
Published using Mendeley: The reference manager for researchers
nmrlearner
Journal club
0
10-12-2012 09:58 AM
[NMR paper] Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
From Mendeley Biomolecular NMR group:
Water proton spin saturation affects measured protein backbone 15N spin relaxation rates
Journal of Magnetic Resonance (2011). Volume: 213, Issue: 1. Pages: 151-157. Kang Chen, Nico Tjandra et al.
Published using Mendeley: The digital library for researchers
nmrlearner
Journal club
0
08-24-2012 08:01 PM
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
Fanghao Hu, Klaus Schmidt-Rohr and Mei Hong
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2081185/aop/images/medium/ja-2011-081185_0008.gif
Journal of the American Chemical Society
DOI: 10.1021/ja2081185
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/C3pPoB5_PR8
nmrlearner
Journal club
0
10-22-2011 10:16 AM
Characterization of different water pools in solid-state NMR protein samples
Characterization of different water pools in solid-state NMR protein samples
Abstract We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions
Publication year: 2010
Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 10 November 2010</br>
Galina, Diakova , Yanina, Goddard , Jean-Pierre, Korb , Robert G., Bryant</br>
The paramagnetic contributions to water proton spin-lattice relaxation rate constants in protein systems spin-labeled with nitroxide radicals were re-examined. As noted by others, the strength of the dipolar coupling between water protons and the protein-bound nitroxide radical often appears to...