BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 03-20-2015, 04:15 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,732
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Water proton NMR-a sensitive probe for solute association.

Water proton NMR-a sensitive probe for solute association.

Water proton NMR-a sensitive probe for solute association.

Chem Commun (Camb). 2015 Mar 19;

Authors: Feng Y, Taraban MB, Yu YB

Abstract
It is found that the transverse relaxation rate R2 of the water protons can be used to quantify protein aggregation and surfactant micellization in water. The simplicity and high intensity of the water proton signal enables non-invasive chemical analysis not readily achievable through solute proton signals, such as inspecting finished biologic products.


PMID: 25788228 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe
A pH-Sensitive, Colorful,Lanthanide-Chelating ParamagneticNMR Probe Wei-Min Liu, Peter H. J. Keizers, Mathias A. S. Hass, Anneloes Blok, Monika Timmer, Alexi J. C. Sarris, Mark Overhand and Marcellus Ubbink http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja307824e/aop/images/medium/ja-2012-07824e_0011.gif Journal of the American Chemical Society DOI: 10.1021/ja307824e http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/NuKda-fEQQ4
nmrlearner Journal club 0 10-10-2012 03:14 PM
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel
NMR Detection of pH-Dependent Histidine–Water Proton Exchange Reveals the Conduction Mechanism of a Transmembrane Proton Channel Fanghao Hu, Klaus Schmidt-Rohr and Mei Hong http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja2081185/aop/images/medium/ja-2011-081185_0008.gif Journal of the American Chemical Society DOI: 10.1021/ja2081185 http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/C3pPoB5_PR8
nmrlearner Journal club 0 10-22-2011 10:16 AM
[Question from NMRWiki Q&A forum] Tuning probe failed after a dual probe was replaced with a BBI probe
Tuning probe failed after a dual probe was replaced with a BBI probe We generally use Dual to run 13C and BBI to run 2D. After changed the probe, the command "edhead" was used to set the probe. Put the sample tube, lock the solvent, and then type "atma" to tune the probe. We always do it like this, but now we can not tune the proton after installed the BBI probe (13C is OK). The dip can not be found by "atma", and "atmm" was also not work on forming a dip. What is the most possible reason for this error? How to solve it and avoid it in the future ? Thanks. (Instrument: Bruker 400 MHz,...
nmrlearner News from other NMR forums 0 08-23-2011 05:31 PM
[NMR tweet] Israel's #Science: Separate water isomers. Benefits: highly sensitive nuclear magnetic resonance (NMR). http://bit.ly/eQifmQ
Israel's #Science: Separate water isomers. Benefits: highly sensitive nuclear magnetic resonance (NMR). http://bit.ly/eQifmQ Published by ActForIsrael (Act for Israel) on 2011-01-20T19:44:20Z Source: Twitter
nmrlearner Twitter NMR 0 01-20-2011 08:02 PM
[NMR tweet] RT @ActForIsrael: Israel's #Science: Separate water isomers. Benefits: highly sensitive nuclear magnetic resonance (NMR). http://bit.ly/eQifmQ
RT @ActForIsrael: Israel's #Science: Separate water isomers. Benefits: highly sensitive nuclear magnetic resonance (NMR). http://bit.ly/eQifmQ Published by eapr9 (eapr9) on 2011-01-20T19:44:44Z Source: Twitter
nmrlearner Twitter NMR 0 01-20-2011 08:02 PM
Slight mistuning of a cryogenic probe significantly perturbs the water 1H precession frequency
Slight mistuning of a cryogenic probe significantly perturbs the water 1H precession frequency Abstract A shift of the water proton precession frequency is described that can introduce errors in chemical shifts derived using the water signal as the chemical shift reference. This shift, fs, arises as a consequence of radiation damping when the water proton and detector circuit resonance frequencies differ. Herein it is shown that experimental values of fs, measured as a function of detector circuit tuning offset for 500 and 900 MHz cryogenic probes, are in good agreement with theory. Of...
nmrlearner Journal club 0 01-09-2011 12:46 PM
[NMR paper] Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cel
Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts. Related Articles Proton NMR visible mobile lipid signals in sensitive and multidrug-resistant K562 cells are modulated by rafts. Cancer Cell Int. 2005 Feb 9;5(1):2 Authors: Mannechez A, Reungpatthanaphong P, de Certaines JD, Leray G, Le Moyec L BACKGROUND: Most cancer cells are characterized by mobile lipids visible on proton NMR (1H-NMR), these being comprised mainly of methyl and methylene signals from lipid acyl chains....
nmrlearner Journal club 0 11-24-2010 11:14 PM
[NMR paper] Nature of lysozyme-water interactions by proton NMR.
Nature of lysozyme-water interactions by proton NMR. Related Articles Nature of lysozyme-water interactions by proton NMR. Biochem Cell Biol. 1991 May-Jun;69(5-6):341-5 Authors: Prosser S, Peemoeller H Proton spin-lattice relaxation measurements were performed in 10 mM lysozyme solution as a function of temperature and degree of substitution of solvent H2O with D2O. The results show that in the temperature range from 274 to 323 K, the intermolecular lysozyme proton water proton coupling contributes appreciably to the observed water proton...
nmrlearner Journal club 0 08-21-2010 11:16 PM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 11:34 AM.


Map