Available online 12 December 2012
Publication year: 2012 Source:Journal of Magnetic Resonance
Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd3+ chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to access long distances, a major difficulty arises from the large frequency spacing (about 700 MHz) between the narrow, intense signal of the Gd3+ central transition and the nitroxide signal. This is particularly problematic when using standard single-mode cavities. Here we show that a novel dual-mode cavity that matches this large frequency separation dramatically increases the sensitivity of DEER measurements, allowing evolution times as long as 12 ?s in a protein. This opens the possibility of accessing distances of 8 nm and longer. In addition, orientation selection can be resolved and analyzed, thus providing additional structural information. In the case of W-band DEER on a Gd3+-nitroxide pair, only two angles and their distributions have to be determined, which is a much simpler problem to solve than the five angles and their distributions associated with two nitroxide labels. Graphical abstract
Highlights
? A Gd3+-nitroxide distance of 5.75 nm was determined by W-band DEER. ? A new dual mode cavity gave the required ~700 MHz observe-pump frequency separation. ? 12 ?s dipolar evolution was achieved, distances of 8 nm and above can be accessed. ? Orientation selection was resolved and analyzed.
W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity
W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity
Available online 12 December 2012
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
</br>
Double electron-electron resonance (DEER) at W-band (95 GHz) was applied to measure the distance between a pair of nitroxide and Gd3+ chelate spin labels, about 6 nm apart, in a homodimer of the protein ERp29. While high-field DEER measurements on systems with such mixed labels can be highly attractive in terms of sensitivity and the potential to...
nmrlearner
Journal club
0
12-12-2012 08:21 PM
DEER-Stitch: Combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data
DEER-Stitch: Combining three- and four-pulse DEER measurements for high sensitivity, deadtime free data
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
J.E. Lovett, B.W. Lovett, J. Harmer</br>
Over approximately the last fifteen years the electron paramagnetic resonance (EPR) technique of double electron electron resonance (DEER) has attracted considerable attention since it allows for the precise measurement of the dipole-dipole coupling between radicals and thus can lead to distance information between pairs of radicals separated by up to ca. 8 nm....
nmrlearner
Journal club
0
08-22-2012 02:13 AM
Orientation selective DEER measurements on vinculin tail at X-band frequencies reveal spin label orientations
Orientation selective DEER measurements on vinculin tail at X-band frequencies reveal spin label orientations
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 216</br>
Christoph Abé, Daniel Klose, Franziska Dietrich, Wolfgang H. Ziegler, Yevhen Polyhach, Gunnar Jeschke, Heinz-Jürgen Steinhoff</br>
Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also...
nmrlearner
Journal club
0
03-13-2012 03:33 PM
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Effect of freezing conditions on distances and their distributions derived from Double Electron Electron Resonance (DEER): A study of doubly-spin-labeled T4 lysozyme
Publication year: 2012
Source:Journal of Magnetic Resonance, Volume 216</br>
Elka R. Georgieva, Aritro S. Roy, Vladimir M. Grigoryants, Petr P. Borbat, Keith A. Earle, Charles P. Scholes, Jack H. Freed</br>
Pulsed dipolar ESR spectroscopy, DEER and DQC, require frozen samples. An important issue in the biological application of this technique is how the freezing rate and concentration of cryoprotectant...
nmrlearner
Journal club
0
03-13-2012 03:33 PM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source:Journal of Magnetic Resonance</br>
Zhengfeng Zhang, Yimin Miao, Xiaoli Liu, Jun Yang, Conggang Li, Feng Deng, Riqiang Fu</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, the 13C RF amplitude is...
nmrlearner
Journal club
0
03-09-2012 09:16 AM
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Dual-band Selective Double Cross Polarization for Heteronuclear Polarization Transfer between Dilute Spins in Solid-State MAS NMR
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 5 March 2012</br>
Zhengfeng*Zhang, Yimin*Miao, Xiaoli*Liu, Jun*Yang, Conggang*Li, ...</br>
A sinusoidal modulation scheme is described for selective heteronuclear polarization transfer between two dilute spins in double cross polarization magic-angle-spinning nuclear magnetic resonance spectroscopy. During the second N->C cross polarization, theC RF amplitude is modulated...
nmrlearner
Journal club
0
03-06-2012 06:04 AM
Orientation Selective DEER Measurements on Vinculin Tail at X-Band Frequencies Reveal Spin Label Orientations
Orientation Selective DEER Measurements on Vinculin Tail at X-Band Frequencies Reveal Spin Label Orientations
Publication year: 2012
Source: Journal of Magnetic Resonance, Available online 8 January 2012</br>
Christoph*Abé, Daniel*Klose, Franziska*Dietrich, Wolfgang H.*Ziegler, Yevhen*Polyhach, ...</br>
Double electron electron resonance (DEER) spectroscopy has been established as a valuable method to determine distances between spin labels bound to protein molecules. Caused by selective excitation of molecular orientations DEER primary data also depend on the mutual orientation of...
nmrlearner
Journal club
0
01-10-2012 03:38 PM
[NMR paper] Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
Related Articles Site-specific 13C chemical shift anisotropy measurements in a uniformly 15N,13C-labeled microcrystalline protein by 3D magic-angle spinning NMR spectroscopy.
J Am Chem Soc. 2005 Aug 31;127(34):11946-7
Authors: Wylie BJ, Franks WT, Graesser DT, Rienstra CM
In this Communication, we introduce a 3D magic-angle spinning recoupling experiment that correlates chemical shift...