BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-25-2015, 05:56 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Visualizing transient dark states by NMR spectroscopy.

Visualizing transient dark states by NMR spectroscopy.

Visualizing transient dark states by NMR spectroscopy.

Q Rev Biophys. 2015 Feb;48(1):35-116

Authors: Anthis NJ, Clore GM

Abstract
Myriad biological processes proceed through states that defy characterization by conventional atomic-resolution structural biological methods. The invisibility of these 'dark' states can arise from their transient nature, low equilibrium population, large molecular weight, and/or heterogeneity. Although they are invisible, these dark states underlie a range of processes, acting as encounter complexes between proteins and as intermediates in protein folding and aggregation. New methods have made these states accessible to high-resolution analysis by nuclear magnetic resonance (NMR) spectroscopy, as long as the dark state is in dynamic equilibrium with an NMR-visible species. These methods - paramagnetic NMR, relaxation dispersion, saturation transfer, lifetime line broadening, and hydrogen exchange - allow the exploration of otherwise invisible states in exchange with a visible species over a range of timescales, each taking advantage of some unique property of the dark state to amplify its effect on a particular NMR observable. In this review, we introduce these methods and explore two specific techniques - paramagnetic relaxation enhancement and dark state exchange saturation transfer - in greater detail.


PMID: 25710841 [PubMed - as supplied by publisher]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy.
Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. http://www.bionmr.com//www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--media.wiley.com-assets-2250-98-WileyOnlineLibrary-Button_120x27px_FullText.gif Related Articles Frontispiece: probing transient conformational States of proteins by solid-state r1? relaxation-dispersion NMR spectroscopy. Angew Chem Int Ed Engl. 2014 Apr 22;53(17) Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J,...
nmrlearner Journal club 0 04-23-2014 06:31 PM
[NMR paper] Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy.
Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy. Related Articles Probing Transient Conformational States of Proteins by Solid-State R1? Relaxation-Dispersion NMR Spectroscopy. Angew Chem Int Ed Engl. 2014 Mar 18; Authors: Ma P, Haller JD, Zajakala J, Macek P, Sivertsen AC, Willbold D, Boisbouvier J, Schanda P Abstract The function of proteins depends on their ability to sample a variety of states differing in structure and free energy. Deciphering how the various thermally...
nmrlearner Journal club 0 03-20-2014 12:44 PM
[NMR paper] Ca(2+) modulating ?-synuclein membrane transient interactions revealed by solution NMR spectroscopy.
Ca(2+) modulating ?-synuclein membrane transient interactions revealed by solution NMR spectroscopy. Related Articles Ca(2+) modulating ?-synuclein membrane transient interactions revealed by solution NMR spectroscopy. Biochim Biophys Acta. 2013 Dec 4; Authors: Zhang Z, Dai C, Bai J, Xu G, Liu M, Li C Abstract ?-synuclein is involved in Parkinson's disease and its interaction with cell membrane is crucial to its pathological and physiological functions. Membrane properties, such as curvature, lipid composition have been shown to affect the...
nmrlearner Journal club 0 12-10-2013 05:36 PM
[NMR paper] Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR.
Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Probing the transient dark state of substrate binding to GroEL by relaxation-based solution NMR. Proc Natl Acad Sci U S A. 2013 Jun 24; Authors: Libich DS, Fawzi NL, Ying J, Clore GM Abstract
nmrlearner Journal club 0 06-27-2013 02:10 PM
[NMR paper] Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applica
Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding. Related Articles Rapid sample-mixing technique for transient NMR and photo-CIDNP spectroscopy: applications to real-time protein folding. J Am Chem Soc. 2003 Oct 15;125(41):12484-92 Authors: Mok KH, Nagashima T, Day IJ, Jones JA, Jones CJ, Dobson CM, Hore PJ We describe the development and application of a novel rapid sample-mixing technique for real-time NMR (nuclear magnetic resonance) spectroscopy. The apparatus consists...
nmrlearner Journal club 0 11-24-2010 09:16 PM
[NMR paper] Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C
Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Related Articles Transient protein interactions studied by NMR spectroscopy: the case of cytochrome C and adrenodoxin. Biochemistry. 2003 Jun 17;42(23):7068-76 Authors: Worrall JA, Reinle W, Bernhardt R, Ubbink M The interaction between yeast iso-1-cytochrome c (C102T) and two forms of bovine adrenodoxin, the wild type and a truncated form comprising residues 4-108, has been investigated using a combination of one- and two-dimensional...
nmrlearner Journal club 0 11-24-2010 09:01 PM
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy Abstract Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such transient intermediates in a number of protein-protein and protein-DNA complexes. Here we present an analysis of the recently published PRE NMR data for a protein complex of yeast...
nmrlearner Journal club 0 11-06-2010 01:24 PM
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy.
Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy. Mapping the encounter state of a transient protein complex by PRE NMR spectroscopy. J Biomol NMR. 2010 Nov 4; Authors: Volkov AN, Ubbink M, van Nuland NA Many biomolecular interactions proceed via a short-lived encounter state, consisting of multiple, lowly-populated species invisible to most experimental techniques. Recent development of paramagnetic relaxation enhancement (PRE) nuclear magnetic resonance (NMR) spectroscopy has allowed to directly visualize such...
nmrlearner Journal club 0 11-05-2010 10:01 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 12:18 AM.


Map