Publication year: 2011 Source: Journal of Magnetic Resonance, In Press, Accepted Manuscript, Available online 3 February 2011
Monika, Bayrhuber , Roland, Riek
Sensitivity enhancement in liquid state nuclear magnetic resonance (NMR) triple resonance experiments for the sequential assignment of proteins is important for the investigation of large proteins or protein complexes. We present here the 3D TROSY-MQ/CRINEPT-HN(CO)CA which makes use of a 15N-1H-TROSY element and a 13C’-13CA CRINEPT step combined with a multiple quantum coherence during the 13CA evolution period. Because of the introduction of these relaxation-optimized elements and ten less pulses required, when compared with the conventional TROSY-HN(CO)CA experiment an average signal enhancement of a factor of 1.8 was observed for the membrane protein-detergent complex KcsA with a rotational correlation time... Graphical abstract
*Graphical abstract:**Research highlights:*? 3D TROSY-MQ/CRINEPT-HN(CO)CA is a high sensitive NMR triple resonance experiment for sequential assignment ? A signal enhancement of a factor of ~1.8 is obtained on the membrane protein KcsA when compared with a conventional TROSY-based HN(CO)CA experiment
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Estimating side-chain order in methyl-protonated, perdeuterated proteins via multiple-quantum relaxation violated coherence transfer NMR spectroscopy
Abstract Relaxation violated coherence transfer NMR spectroscopy (Tugarinov et al. in J Am Chem Soc 129:1743â??1750, 2007) is an established experimental tool for quantitative estimation of the amplitudes of side-chain motions in methyl-protonated, highly deuterated proteins. Relaxation violated coherence transfer experiments monitor the build-up of methyl proton multiple-quantum coherences that can be created in magnetically equivalent...
nmrlearner
Journal club
0
02-11-2012 10:31 AM
TROSY NMR Spectroscopy of Large Soluble Proteins.
TROSY NMR Spectroscopy of Large Soluble Proteins.
TROSY NMR Spectroscopy of Large Soluble Proteins.
Top Curr Chem. 2011 Sep 17;
Authors: Xu Y, Matthews S
Abstract
Solution nuclear magnetic resonance spectroscopy is usually only used to study proteins with molecular weight not exceeding about 50 kDa. This size limit has been lifted significantly in recent years, thanks to the development of labelling methods and the application of transverse-relaxation optimized spectroscopy (TROSY). In particular, methyl-specific labelling and...
nmrlearner
Journal club
0
09-20-2011 03:10 PM
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Multiplet-filtered and gradient-selected zero-quantum TROSY experiments for 13C1H3 methyl groups in proteins
Abstract Multiplet-filtered and gradient-selected heteronuclear zero-quantum coherence (gsHZQC) TROSY experiments are described for measuring 1Hâ??13C correlations for 13CH3 methyl groups in proteins. These experiments provide improved suppression of undesirable, broad outer components of the heteronuclear zero-quantum multiplet in medium-sized proteins, or in flexible sites of larger proteins, compared to previously described HZQC sequences (Tugarinov et al. in J Am Chem Soc...
nmrlearner
Journal club
0
09-17-2011 10:20 AM
Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.
Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.
Multi-dimensional NMR without coherence transfer: Minimizing losses in large systems.
J Magn Reson. 2011 Jul 21;
Authors: Liu Y, Prestegard JH
Most multi-dimensional solution NMR experiments connect one dimension to another using coherence transfer steps that involve evolution under scalar couplings. While experiments of this type have been a boon to biomolecular NMR the need to work on ever larger systems pushes the limits of these procedures. Spin relaxation...
nmrlearner
Journal club
0
08-13-2011 12:57 PM
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
TROSY-selected ZZ-exchange experiment for characterizing slow chemical exchange in large proteins
Abstract A TROSY-selected ZZ-exchange experiment is described for measuring slow chemical exchange rates by monitoring the TROSY component of 15N longitudinal magnetization. Application of the proposed pulse sequence to the cadherin 8 N-terminal extracelluar domain demonstrates that enhanced sensitivity is obtained, compared to a previously described TROSY-detected ZZ-exchange sequence (Sahu et al. J Am Chem Soc 129: 13232â??13237, 2007), by preserving the TROSY effect during the mixing...
nmrlearner
Journal club
0
01-09-2011 12:46 PM
[NMR paper] TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution
TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution.
Related Articles TROSY and CRINEPT: NMR with large molecular and supramolecular structures in solution.
Trends Biochem Sci. 2000 Oct;25(10):462-8
Authors: Riek R, Pervushin K, Wüthrich K
TROSY and CRINEPT are new techniques for solution NMR studies of molecular and supramolecular structures. They allow the collection of high-resolution spectra of structures with molecular weights >100 kDa, significantly extending the range of macromolecular systems that can...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] The role of coherence transfer efficiency in design of TROSY-type multidimensional NM
The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments.
Related Articles The role of coherence transfer efficiency in design of TROSY-type multidimensional NMR experiments.
J Magn Reson. 1999 Aug;139(2):439-42
Authors: Meissner A, Sørensen OW
An improved method for TROSY-type (Pervushin et al., Proc. Natl. Acad. Sci. USA 94, 12366-12371 (1997)) heteronuclear two-dimensional correlation involving protons of negligible CSA is presented. Rather than applying a simple INEPT sequence for back-transfer to...
nmrlearner
Journal club
0
11-18-2010 08:31 PM
[NMR paper] Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and s
Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and suppression of decoupling sidebands.
Related Articles Removal of zero-quantum coherence in protein NMR spectra using SESAM decoupling and suppression of decoupling sidebands.
J Magn Reson B. 1996 Feb;110(2):219-24
Authors: Weigelt J, Hammarstroem A, Bermel W, Otting G