Related ArticlesValidation of NMR side-chain conformations by packing calculations.
Proteins. 1999 May 1;35(2):184-94
Authors: Chung SY, Subbiah S
The precision and accuracy of protein structures determined by nuclear magnetic resonance (NMR) spectroscopy depend on the completeness of input experimental data set. Typically, rather than a single structure, an ensemble of up to 20 equally representative conformers is generated and routinely deposited in the Protein Database. There are substantially more experimentally derived restraints available to define the main-chain coordinates than those of the side chains. Consequently, the side-chain conformations among the conformers are more variable and less well defined than those of the backbone. Even when a side chain is determined with high precision and is found to adopt very similar orientations among all the conformers in the ensemble, it is possible that its orientation might still be incorrect. Thus, it would be helpful if there were a method to assess independently the side-chain orientations determined by NMR. Recently, homology modeling by side-chain packing algorithms has been shown to be successful in predicting the side-chain conformations of the buried residues for a protein when the main-chain coordinates and sequence information are given. Since the main-chain coordinates determined by NMR are consistently more reliable than those of the side-chains, we have applied the side-chain packing algorithms to predict side-chain conformations that are compatible with the NMR-derived backbone. Using four test cases where the NMR solution structures and the X-ray crystal structure of the same protein are available, we demonstrate that the side-chain packing method can provide independent validation for the side-chain conformations of NMR structures. Comparison of the side-chain conformations derived by side-chain packing prediction and by NMR spectroscopy demonstrates that when there is agreement between the NMR model and the predicted model, on average 78% of the time the X-ray structure also concurs. While the side-chain packing method can confirm the reliable residue conformations in NMR models, more importantly, it can also identify the questionable residue conformations with an accuracy of 60%. This validation method can serve to increase the confidence level for potential users of structural models determined by NMR.
[Question from NMRWiki Q&A forum] Side chain assignment of C-terminal residue
Side chain assignment of C-terminal residue
Dear Friends,
I am not able to figure out how to determine the side chain assignment of Last C-terminal SERINE residue of my protein. I can determine CA, CB, CO, N,H values from HNCA, CBCANH, HNCACO. Can someone tell which experiment will give me the information of HA, HB2 and HB3
Regards
Arun
nmrlearner
News from other NMR forums
0
10-09-2011 06:23 PM
[MWClarkson blog] Alternative side-chain structures from methyl CPMG
Alternative side-chain structures from methyl CPMG
http://www.researchblogging.org/public/citation_icons/rb2_large_gray.pngAs I have mentioned before on this blog, the use of tools like CS-ROSETTA holds the promise of determining protein structures using only the chemical shifts of its backbone atoms. In addition to potentially making NOEs and RDCs redundant, this technology allows biologists to determine the conformations of minor members of the structural ensemble, which are very difficult to obtain using conventional approaches in population-dominated techniques like NMR and X-ray...
nmrlearner
News from NMR blogs
0
06-21-2011 03:31 AM
[NMR paper] Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studi
Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.
Related Articles Main chain and side chain dynamics of a heme protein: 15N and 2H NMR relaxation studies of R. capsulatus ferrocytochrome c2.
Biochemistry. 2001 Jun 5;40(22):6559-69
Authors: Flynn PF, Bieber Urbauer RJ, Zhang H, Lee AL, Wand AJ
A detailed characterization of the main chain and side chain dynamics in R. capsulatus ferrocytochrome c(2) derived from (2)H NMR relaxation of methyl group resonances is...
nmrlearner
Journal club
0
11-19-2010 08:32 PM
[NMR paper] NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-label
NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
Related Articles NMR detection of side chain-side chain hydrogen bonding interactions in 13C/15N-labeled proteins.
J Biomol NMR. 2000 Aug;17(4):305-10
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of side chain-side chain hydrogen bonding interactions in proteins with sensitivity-enhanced NMR spectroscopy. Specifically, the remote correlation between the guanidinium nitrogen 15Nepsilon of arginine 71,...
nmrlearner
Journal club
0
11-19-2010 08:29 PM
[NMR paper] Detection of very weak side chain-main chain hydrogen bonding interactions in medium-
Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy.
Related Articles Detection of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled proteins by sensitivity-enhanced NMR spectroscopy.
J Biomol NMR. 2000 May;17(1):79-82
Authors: Liu A, Hu W, Majumdar A, Rosen MK, Patel DJ
We describe the direct observation of very weak side chain-main chain hydrogen bonding interactions in medium-size 13C/15N-labeled...
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] Side-chains in native and random coil protein conformations. Analysis of NMR coupling
Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
Related Articles Side-chains in native and random coil protein conformations. Analysis of NMR coupling constants and chi1 torsion angle preferences.
J Mol Biol. 1998 Jul 31;280(5):867-77
Authors: West NJ, Smith LJ
The behaviour of amino acid side-chains in proteins in solution has been characterised by analysing NMR 3JHalphaH beta coupling constants and crystallographic chi1 torsion angles. Side-chains both in the...
nmrlearner
Journal club
0
11-17-2010 11:15 PM
[NMR paper] Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics
Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Investigation of a side-chain-side-chain hydrogen bond by mutagenesis, thermodynamics, and NMR spectroscopy.
Protein Sci. 1995 May;4(5):936-44
Authors: Hammen PK, Scholtz...
nmrlearner
Journal club
0
08-22-2010 03:41 AM
[NMR paper] Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen
Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--linkinghub.elsevier.com-ihub-images-PubMedLink.gif Related Articles Side-chain conformations in an unfolded protein: chi1 distributions in denatured hen lysozyme determined by heteronuclear 13C, 15N NMR spectroscopy.
J Mol Biol. 1999 May 14;288(4):705-23
Authors: Hennig M, Bermel W, Spencer A, Dobson CM, Smith LJ, Schwalbe H
Using a 13C and...