Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
Utilization of paramagnetic relaxation enhancements for high-resolution NMR structure determination of a soluble loop-rich protein with sparse NOE distance restraints
NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient.
[NMR paper] Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Related Articles Structure determination of protein-protein complexes with long-range anisotropic paramagnetic NMR restraints.
Curr Opin Struct Biol. 2014 Feb;24C:45-53
Authors: Hass MA, Ubbink M
Abstract
Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein-protein complexes. A major breakthrough has been the development of...
nmrlearner
Journal club
0
04-12-2014 06:36 PM
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints
Structure determination of protein–protein complexes with long-range anisotropic paramagnetic NMR restraints
Publication date: February 2014
Source:Current Opinion in Structural Biology, Volume 24</br>
Author(s): Mathias AS Hass , Marcellus Ubbink</br>
Paramagnetic NMR spectroscopy has evolved rapidly in the last decade, and has shown to be a very useful tool for solving structures of protein–protein complexes. A major breakthrough has been the development of paramagnetic metal binding tags that can be attached specifically to the protein. These tags have greatly...
nmrlearner
Journal club
0
12-21-2013 03:15 PM
[NMR paper] Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Related Articles Efficient long-distance NMR-PRE and EPR-DEER restraints for two-domain protein structure determination.
Protein Cell. 2013 Nov 27;
Authors: Wu K, Shi C, Li J, Wang H, Shi P, Chen L, Wu F, Xiong Y, Tian C
PMID: 24282082
nmrlearner
Journal club
0
11-28-2013 05:18 PM
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
Impact of (15)N R(2)/R(1) Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints.
J Am Chem Soc. 2011 Apr 4;
Authors: Ryabov Y, Schwieters CD, Clore GM
(15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to...
nmrlearner
Journal club
0
04-06-2011 10:54 AM
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Impact of 15N R2/R1 Relaxation Restraints on Molecular Size, Shape, and Bond Vector Orientation for NMR Protein Structure Determination with Sparse Distance Restraints
Yaroslav Ryabov, Charles D. Schwieters and G. Marius Clore
http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja201020c/aop/images/medium/ja-2011-01020c_0002.gif
Journal of the American Chemical Society
DOI: 10.1021/ja201020c
http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA
http://feeds.feedburner.com/~r/acs/jacsat/~4/3J1IyCLkQMQ
nmrlearner
Journal club
0
04-05-2011 10:37 AM
[NMR paper] Application of sparse NMR restraints to large-scale protein structure prediction.
Application of sparse NMR restraints to large-scale protein structure prediction.
Related Articles Application of sparse NMR restraints to large-scale protein structure prediction.
Biophys J. 2004 Aug;87(2):1241-8
Authors: Li W, Zhang Y, Skolnick J
The protein structure prediction algorithm TOUCHSTONEX that uses sparse distance restraints derived from NMR nuclear Overhauser enhancement (NOE) data to predict protein structures at low-to-medium resolution was evaluated as follows: First, a representative benchmark set of the Protein Data Bank...
nmrlearner
Journal club
0
11-24-2010 10:01 PM
Distance restraints for structure determination
Distance restraints for structure determination
Experimentally derived parameters for protein structure determination, Part 1: nOe distance restraints. Lecture by Dr. Matthew Cordes from University of Arizona.
More...
nmrlearner
General
0
08-16-2010 03:50 AM
Tunable paramagnetic relaxation enhancements by [Gd(DPA)3]3â?? for protein structure
Abstract Paramagnetic relaxation enhancements (PRE) present a powerful source of structural information in nuclear magnetic resonance (NMR) studies of proteins and proteinâ??ligand complexes. In contrast to conventional PRE reagents that are covalently attached to the protein, the complex between gadolinium and three dipicolinic acid (DPA) molecules, 3â??, can bind to proteins in a non-covalent yet site-specific manner. This offers straightforward access to PREs that can be scaled by using different ratios of 3â?? to protein, allowing quantitative distance measurements for nuclear spins...