BioNMR
NMR aggregator & online community since 2003
BioNMR    
Learn or help to learn NMR - get free NMR books!
 

Go Back   BioNMR > Educational resources > Journal club
Advanced Search
Home Forums Wiki NMR feeds Downloads Register Today's Posts



Jobs Groups Conferences Literature Pulse sequences Software forums Programs Sample preps Web resources BioNMR issues


Webservers
NMR processing:
MDD
NMR assignment:
Backbone:
Autoassign
MARS
UNIO Match
PINE
Side-chains:
UNIO ATNOS-Ascan
NOEs:
UNIO ATNOS-Candid
UNIO Candid
ASDP
Structure from NMR restraints:
Ab initio:
GeNMR
Cyana
XPLOR-NIH
ASDP
UNIO ATNOS-Candid
UNIO Candid
Fragment-based:
BMRB CS-Rosetta
Rosetta-NMR (Robetta)
Template-based:
GeNMR
I-TASSER
Refinement:
Amber
Structure from chemical shifts:
Fragment-based:
WeNMR CS-Rosetta
BMRB CS-Rosetta
Homology-based:
CS23D
Simshift
Torsion angles from chemical shifts:
Preditor
TALOS
Promega- Proline
Secondary structure from chemical shifts:
CSI (via RCI server)
TALOS
MICS caps, β-turns
d2D
PECAN
Flexibility from chemical shifts:
RCI
Interactions from chemical shifts:
HADDOCK
Chemical shifts re-referencing:
Shiftcor
UNIO Shiftinspector
LACS
CheckShift
RefDB
NMR model quality:
NOEs, other restraints:
PROSESS
PSVS
RPF scores
iCing
Chemical shifts:
PROSESS
CheShift2
Vasco
iCing
RDCs:
DC
Anisofit
Pseudocontact shifts:
Anisofit
Protein geomtery:
Resolution-by-Proxy
PROSESS
What-If
iCing
PSVS
MolProbity
SAVES2 or SAVES4
Vadar
Prosa
ProQ
MetaMQAPII
PSQS
Eval123D
STAN
Ramachandran Plot
Rampage
ERRAT
Verify_3D
Harmony
Quality Control Check
NMR spectrum prediction:
FANDAS
MestReS
V-NMR
Flexibility from structure:
Backbone S2
Methyl S2
B-factor
Molecular dynamics:
Gromacs
Amber
Antechamber
Chemical shifts prediction:
From structure:
Shiftx2
Sparta+
Camshift
CH3shift- Methyl
ArShift- Aromatic
ShiftS
Proshift
PPM
CheShift-2- Cα
From sequence:
Shifty
Camcoil
Poulsen_rc_CS
Disordered proteins:
MAXOCC
Format conversion & validation:
CCPN
From NMR-STAR 3.1
Validate NMR-STAR 3.1
NMR sample preparation:
Protein disorder:
DisMeta
Protein solubility:
camLILA
ccSOL
Camfold
camGroEL
Zyggregator
Isotope labeling:
UPLABEL
Solid-state NMR:
sedNMR


Reply
 
Thread Tools Search this Thread Rate Thread Display Modes
  #1  
Old 02-23-2013, 01:51 PM
nmrlearner's Avatar
Senior Member
 
Join Date: Jan 2005
Posts: 23,777
Points: 193,617, Level: 100
Points: 193,617, Level: 100 Points: 193,617, Level: 100 Points: 193,617, Level: 100
Level up: 0%, 0 Points needed
Level up: 0% Level up: 0% Level up: 0%
Activity: 50.7%
Activity: 50.7% Activity: 50.7% Activity: 50.7%
Last Achievements
Award-Showcase
NMR Credits: 0
NMR Points: 193,617
Downloads: 0
Uploads: 0
Default Use of (113)cd NMR to probe the native metal binding sites in metalloproteins: an overview.

Use of (113)cd NMR to probe the native metal binding sites in metalloproteins: an overview.

Use of (113)cd NMR to probe the native metal binding sites in metalloproteins: an overview.

Met Ions Life Sci. 2013;11:117-44

Authors: Armitage IM, Drakenberg T, Reilly B

Abstract
Our laboratories have actively published in this area for several years and the objective of this chapter is to present as comprehensive an overview as possible. Following a brief review of the basic principles associated with (113)Cd NMR methods, we will present the results from a thorough literature search for (113)Cd chemical shifts from metalloproteins. The updated (113)Cd chemical shift figure in this chapter will further illustrate the excellent correlation of the (113)Cd chemical shift with the nature of the coordinating ligands (N, O, S) and coordination number/geometry, reaffirming how this method can be used not only to identify the nature of the protein ligands in uncharacterized cases but also the dynamics at the metal binding site. Specific examples will be drawn from studies on alkaline phosphatase, Ca(2+) binding proteins, and metallothioneins.In the case of Escherichia coli alkaline phosphatase, a dimeric zinc metalloenzyme where a total of six metal ions (three per monomer) are involved directly or indirectly in providing the enzyme with maximal catalytic activity and structural stability, (113)Cd NMR, in conjunction with (13)C and (31)P NMR methods, were instrumental in separating out the function of each class of metal binding sites. Perhaps most importantly, these studies revealed the chemical basis for negative cooperativity that had been reported for this enzyme under metal deficient conditions. Also noteworthy was the fact that these NMR studies preceeded the availability of the X-ray crystal structure.In the case of the calcium binding proteins, we will focus on two proteins: calbindin D(9k) and calmodulin. For calbindin D(9k) and its mutants, (113)Cd NMR has been useful both to follow actual changes in the metal binding sites and the cooperativity in the metal binding. Ligand binding to calmodulin has been studied extensively with (113)Cd NMR showing that the metal binding sites are not directly involved in the ligand binding. The (113)Cd chemical shifts are, however, exquisitely sensitive to minute changes in the metal ion environment.In the case of metallothionein, we will reflect upon how (113)Cd substitution and the establishment of specific Cd to Cys residue connectivity by proton-detected heteronuclear (1)H-(113)Cd multiple-quantum coherence methods (HMQC) was essential for the initial establishment of the 3D structure of metallothioneins, a protein family deficient in the regular secondary structural elements of ?-helix and ?-sheet and the first native protein identified with bound Cd. The (113)Cd NMR studies also enabled the characterization of the affinity of the individual sites for (113)Cd and, in competition experiments, for other divalent metal ions: Zn, Cu, and Hg.


PMID: 23430773 [PubMed - in process]



More...
Reply With Quote


Did you find this post helpful? Yes | No

Reply
Similar Threads
Thread Thread Starter Forum Replies Last Post
[NMR paper] Copper(I)-?-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites.
Copper(I)-?-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-pubmed-acspubs.jpg Related Articles Copper(I)-?-Synuclein Interaction: Structural Description of Two Independent and Competing Metal Binding Sites. Inorg Chem. 2013 Jan 23; Authors: Camponeschi F, Valensin D, Tessari I, Bubacco L, Dell'acqua S, Casella L, Monzani E, Gaggelli E, Valensin G Abstract The aggregation of ?-synuclein (?S) is a critical step in...
nmrlearner Journal club 0 02-03-2013 10:19 AM
Accurate Structure andDynamics of the Metal-Siteof Paramagnetic Metalloproteins from NMR Parameters Using NaturalBond Orbitals
Accurate Structure andDynamics of the Metal-Siteof Paramagnetic Metalloproteins from NMR Parameters Using NaturalBond Orbitals D. Flemming Hansen, William M. Westler, Micha B. A. Kunze, John L. Markley, Frank Weinhold and Jens J. Led http://pubs.acs.org/appl/literatum/publisher/achs/journals/content/jacsat/0/jacsat.ahead-of-print/ja209348p/aop/images/medium/ja-2011-09348p_0012.gif Journal of the American Chemical Society DOI: 10.1021/ja209348p http://feeds.feedburner.com/~ff/acs/jacsat?d=yIl2AUoC8zA http://feeds.feedburner.com/~r/acs/jacsat/~4/Qg_6xrkf-IM
nmrlearner Journal club 0 03-06-2012 06:17 PM
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of 15N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR Abstract Magic-angle spinning solid-state NMR measurements of 15N longitudinal paramagnetic relaxation enhancements (PREs) in 13C,15N-labeled proteins modified with Cu2+-chelating tags can yield multiple long-range electron-nucleus distance restraints up to ~20 Ã? (Nadaud et al. in J Am Chem Soc 131:8108â??8120, 2009). Using the EDTA-Cu2+ K28C mutant of B1 immunoglobulin...
nmrlearner Journal club 0 08-13-2011 02:47 AM
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR.
Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. Evaluation of the influence of intermolecular electron-nucleus couplings and intrinsic metal binding sites on the measurement of (15)N longitudinal paramagnetic relaxation enhancements in proteins by solid-state NMR. J Biomol NMR. 2011 Aug 9; Authors: Nadaud PS, Sengupta I, Helmus JJ, Jaroniec CP Magic-angle spinning solid-state NMR...
nmrlearner Journal club 0 08-10-2011 12:30 PM
[NMR paper] Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation.
Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Related Articles Metal binding sites in proteins: identification and characterization by paramagnetic NMR relaxation. Biochemistry. 2005 Aug 23;44(33):11014-23 Authors: Jensen MR, Petersen G, Lauritzen C, Pedersen J, Led JJ A method is presented that allows the identification and quantitative characterization of metal binding sites in proteins using paramagnetic nuclear magnetic resonance spectroscopy. The method relies on the nonselective...
nmrlearner Journal club 0 12-01-2010 06:56 PM
[NMR paper] Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR stu
Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. Related Articles Metal-ligand interactions in perturbed blue copper sites: a paramagnetic (1)H NMR study of Co(II)-pseudoazurin. J Biol Inorg Chem. 2003 Jan;8(1-2):75-82 Authors: Fernández CO, Niizeki T, Kohzuma T, Vila AJ Pseudoazurin is an electron transfer copper protein, a member of the cupredoxin family. The protein is frequently found in denitrifying bacteria, where it is the electron donor of nitrite reductase. The copper at...
nmrlearner Journal club 0 11-24-2010 08:58 PM
[NMR paper] NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: t
NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Related Articles NMR identification of heavy metal-binding sites in a synthetic zinc finger peptide: toxicological implications for the interactions of xenobiotic metals with zinc finger proteins. Toxicol Appl Pharmacol. 2001 Apr 1;172(1):1-10 Authors: Razmiafshari M, Kao J, d'Avignon A, Zawia NH Lead (Pb), mercury (Hg), and cadmium (Cd) are toxic and interfere with...
nmrlearner Journal club 0 11-19-2010 08:32 PM
[NMR paper] Establishing isostructural metal substitution in metalloproteins using 1H NMR, circul
Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy. http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www3.interscience.wiley.com-aboutus-images-wiley_interscience_pubmed_logo_FREE_120x27.gif http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--www.pubmedcentral.nih.gov-corehtml-pmc-pmcgifs-pubmed-pmc.gif Related Articles Establishing isostructural metal substitution in metalloproteins using 1H NMR, circular dichroism, and Fourier transform infrared spectroscopy. ...
nmrlearner Journal club 0 08-22-2010 03:50 AM



Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is On
Trackbacks are Off
Pingbacks are Off
Refbacks are Off



BioNMR advertisements to pay for website hosting and domain registration. Nobody does it for us.



Powered by vBulletin® Version 3.7.3
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Copyright, BioNMR.com, 2003-2013
Search Engine Friendly URLs by vBSEO 3.6.0

All times are GMT. The time now is 07:03 PM.


Map