Related ArticlesUnusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy.
Biochemistry. 1994 Mar 8;33(9):2409-21
Authors: Bagby S, Harvey TS, Kay LE, Eagle SG, Inouye S, Ikura M
Multidimensional heteronuclear NMR spectroscopy has been used to determine almost complete backbone and side-chain 1H, 15N, and 13C resonance assignments of calcium loaded Myxococcus xanthus protein S (173 residues). Of the range of constant-time triple resonance experiments recorded, HNCACB and CBCA(CO)NH, which correlate C alpha and C beta with backbone amide resonances of the same and the succeeding residue respectively, proved particularly useful in resolving assignment ambiguities created by the 4-fold internal homology of the protein S amino acid sequence. Extensive side-chain 1H and 13C assignments have been obtained by analysis of HCCH-TOCSY and 15N-edited TOCSY-HMQC spectra. A combination of NOE, backbone amide proton exchange, 3JNH alpha coupling constant, and chemical shift data has been used to show that each of the protein S repeat units consists of four beta-strands in a Greek key arrangement. Two of the Greek keys contain a regular alpha-helix between the third and fourth strands, resulting in an unusual and possibly unique variation on this common folding motif. Despite similarity between two nine-residue stretches in the first and third domains of protein S and one of the Ca(2+)-binding sequences in bovine brain calmodulin [Inouye, S., Franceschini, T., & Inouye, M. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 6829-6833], the protein S topology in these regions is incompatible with an EF-hand calmodulin-type Ca(2+)-binding site.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Engineering of a bis-chelator motif into a protein ?-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy.
Chem Commun (Camb). 2011 May 27;
Authors: Swarbrick JD, Ung P, Su XC, Maleckis A, Chhabra S, Huber T, Otting G, Graham B
Attachment of two nitrilotriacetic acid-based ligands to a protein ?-helix in an i, i + 4 configuration produces an octadentate chelating motif that is able to bind paramagnetic...
nmrlearner
Journal club
0
05-28-2011 06:50 PM
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Site-specific free energy changes in proteins upon ligand binding by NMR: Ca(2+) -displacement by Ln(3+) in a Ca(2+) -binding protein from Entamoeba histolytica.
Chem Biol Drug Des. 2011 Jan 14;
Authors: Chandra K, Mustafi SM, Muthukumar S, Chary KV
The study of protein-ligand interaction has been of a great interest in contemporary structural biology. The understanding of the nature...
nmrlearner
Journal club
0
01-18-2011 10:22 PM
[NMR paper] 19F NMR study of the leucine-specific binding protein of Escherichia coli: mutagenesi
19F NMR study of the leucine-specific binding protein of Escherichia coli: mutagenesis and assignment of the 5-fluorotryptophan-labeled residues.
Related Articles 19F NMR study of the leucine-specific binding protein of Escherichia coli: mutagenesis and assignment of the 5-fluorotryptophan-labeled residues.
Protein Eng. 2002 Nov;15(11):855-9
Authors: Salopek-Sondi B, Luck LA
The Escherichia coli L-leucine receptor is an aqueous protein and the first component in the distinct transport pathway for hydrophobic amino acids. L-leucine binding...
nmrlearner
Journal club
0
11-24-2010 08:58 PM
[NMR paper] NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding pro
NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein.
Related Articles NMR solution structure of AlcR (1-60) provides insight in the unusual DNA binding properties of this zinc binuclear cluster protein.
J Mol Biol. 2000 Jan 28;295(4):729-36
Authors: Cerdan R, Cahuzac B, Félenbok B, Guittet E
The three-dimensional structure of the DNA-binding domain (residues 1-60) of the ethanol regulon transcription factor AlcR from Aspergillus nidulans has been solved by NMR....
nmrlearner
Journal club
0
11-18-2010 09:15 PM
[NMR paper] The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR
The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
http://www.ncbi.nlm.nih.gov/corehtml/query/egifs/http:--pubs.acs.org-images-acspubs.jpg Related Articles The helix-hinge-helix structural motif in human apolipoprotein A-I determined by NMR spectroscopy.
Biochemistry. 1997 Nov 4;36(44):13657-66
Authors: Wang G, Sparrow JT, Cushley RJ
The conformation of a synthetic peptide of 46 residues from apoA-I was investigated by fluorescence, CD, and 2D NMR spectroscopies in lipid-mimetic environments....
nmrlearner
Journal club
0
08-22-2010 05:08 PM
[NMR paper] Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S.
Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy.
Related Articles Unusual helix-containing greek keys in development-specific Ca(2+)-binding protein S. 1H, 15N, and 13C assignments and secondary structure determined with the use of multidimensional double and triple resonance heteronuclear NMR spectroscopy.
Biochemistry. 1994 Mar 8;33(9):2409-21
Authors: Bagby S,...
nmrlearner
Journal club
0
08-22-2010 03:33 AM
[NMR paper] Elongation of helix III of the NK-2 homeodomain upon binding to DNA: a secondary stru
Elongation of helix III of the NK-2 homeodomain upon binding to DNA: a secondary structure study by NMR.
Related Articles Elongation of helix III of the NK-2 homeodomain upon binding to DNA: a secondary structure study by NMR.
Biochemistry. 1994 Dec 20;33(50):15053-60
Authors: Tsao DH, Gruschus JM, Wang LH, Nirenberg M, Ferretti JA
The secondary structure of the homeodomain encoded by the NK-2 gene from Drosophila melanogaster, in both the free and DNA-bound states, was determined in solution using two- and three-dimensional (2D and 3D) NMR...